一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

多接入邊緣計算賦能的AI質(zhì)檢系統(tǒng)任務(wù)實時調(diào)度策略

周曉天 孫上 張海霞 鄧伊琴 魯彬彬

周曉天, 孫上, 張海霞, 鄧伊琴, 魯彬彬. 多接入邊緣計算賦能的AI質(zhì)檢系統(tǒng)任務(wù)實時調(diào)度策略[J]. 電子與信息學(xué)報, 2024, 46(2): 662-670. doi: 10.11999/JEIT230129
引用本文: 周曉天, 孫上, 張海霞, 鄧伊琴, 魯彬彬. 多接入邊緣計算賦能的AI質(zhì)檢系統(tǒng)任務(wù)實時調(diào)度策略[J]. 電子與信息學(xué)報, 2024, 46(2): 662-670. doi: 10.11999/JEIT230129
ZHOU Xiaotian, SUN Shang, ZHANG Haixia, DENG Yiqin, LU Binbin. Real-time Task Scheduling for Multi-access Edge Computing-enabled AI Quality Inspection Systems[J]. Journal of Electronics & Information Technology, 2024, 46(2): 662-670. doi: 10.11999/JEIT230129
Citation: ZHOU Xiaotian, SUN Shang, ZHANG Haixia, DENG Yiqin, LU Binbin. Real-time Task Scheduling for Multi-access Edge Computing-enabled AI Quality Inspection Systems[J]. Journal of Electronics & Information Technology, 2024, 46(2): 662-670. doi: 10.11999/JEIT230129

多接入邊緣計算賦能的AI質(zhì)檢系統(tǒng)任務(wù)實時調(diào)度策略

doi: 10.11999/JEIT230129 cstr: 32379.14.JEIT230129
基金項目: 國家自然科學(xué)基金(61860206005, U22A2003, 61971270)
詳細(xì)信息
    作者簡介:

    周曉天:男,副教授,研究方向為無線通信與網(wǎng)絡(luò)、邊緣計算與智能通信等

    孫上:女,碩士生,研究方向為物聯(lián)網(wǎng)、邊緣計算等

    張海霞:女,教授,研究方向為無線通信與網(wǎng)絡(luò)、無線資源管理、智能通信技術(shù)等

    鄧伊琴:女,博士后,研究方向為邊緣計算、車聯(lián)網(wǎng)、無線資源優(yōu)化等

    魯彬彬:男,碩士,研究方向為車聯(lián)網(wǎng)、計算卸載、資源優(yōu)化等

    通訊作者:

    張海霞 haixia.zhang@sdu.edu.cn

  • 中圖分類號: TN929.5; TP18

Real-time Task Scheduling for Multi-access Edge Computing-enabled AI Quality Inspection Systems

Funds: The National Natural Science Foundation of China (61860206005, U22A2003, 61971270)
  • 摘要: AI質(zhì)檢是智能制造的重要環(huán)節(jié),其設(shè)備在進(jìn)行產(chǎn)品質(zhì)量檢測時會產(chǎn)生大量計算密集型和時延敏感型任務(wù)。由于設(shè)備計算能力不足,執(zhí)行檢測任務(wù)時延較大,極大影響生產(chǎn)效率。多接入邊緣計算(MEC)通過將任務(wù)卸載至邊緣服務(wù)器為設(shè)備提供就近算力,提升任務(wù)執(zhí)行效率。然而,系統(tǒng)中存在信道變化和任 務(wù)隨機到達(dá)等動態(tài)因素,極大影響卸載效率,給任務(wù)調(diào)度帶來了挑戰(zhàn)。該文面向多接入邊緣計算賦能的AI質(zhì)檢任務(wù)調(diào)度系統(tǒng),研究了聯(lián)合任務(wù)調(diào)度與資源分配的長期時延最小化問題。由于該問題狀態(tài)空間大、動作空間包含連續(xù)變量,該文提出運用深度確定性策略梯度(DDPG)進(jìn)行實時任務(wù)調(diào)度算法設(shè)計。所設(shè)計算法可基于系統(tǒng)實時狀態(tài)信息給出最優(yōu)決策。仿真結(jié)果表明,與基準(zhǔn)算法相比,該文所提算法具有更好的性能表現(xiàn)和更小的任務(wù)執(zhí)行時延。
  • 圖  1  MEC賦能的AI質(zhì)檢系統(tǒng)任務(wù)調(diào)度結(jié)構(gòu)圖

    圖  2  算法結(jié)構(gòu)圖

    圖  3  不同學(xué)習(xí)率下的累積獎勵

    圖  4  系統(tǒng)長期任務(wù)執(zhí)行時延方案對比

    圖  5  系統(tǒng)平均任務(wù)執(zhí)行時延方案對比

    算法1 基于DDPG的AI質(zhì)檢任務(wù)實時調(diào)度算法
     輸入:估計網(wǎng)絡(luò)參數(shù)$ {\theta _0} $和目標(biāo)網(wǎng)絡(luò)參數(shù)$ \theta {'_0} $;
     其他基本參數(shù)$ \gamma ,N,T,{f^l},{f^c},K,\lambda ,B,{N_0},\xi ,\varepsilon $;
     輸出:訓(xùn)練完成的Actor網(wǎng)絡(luò)模型參數(shù)
     (1) For ep = 1, 2, ···, K :
     (2)   初始化AI質(zhì)檢系統(tǒng)環(huán)境,得到環(huán)境的初始狀態(tài) s(0);
     (3)   For t = 1, 2, ···, T :
     (4)     根據(jù)Actor網(wǎng)絡(luò)的輸出疊加 OU 噪聲后選擇一個動
           作a(t) 輸入環(huán)境;
     (5)     觀測AI質(zhì)檢系統(tǒng)環(huán)境的輸出獎勵和下一時刻的狀態(tài);
     (6)     將元組$\left( {{\boldsymbol{s}}(t),{\boldsymbol{a}}(t),r(t),{\boldsymbol{s}}(t + 1)} \right)$存儲到經(jīng)驗池中;
     (7)     從經(jīng)驗池中選擇小批量數(shù)據(jù);
     (8)     按式 (13) 更新估計網(wǎng)絡(luò)的Actor網(wǎng)絡(luò)參數(shù);
     (9)     按式 (14) 更新估計網(wǎng)絡(luò)的Critic網(wǎng)絡(luò)參數(shù);
     (10)     按式 (15) 更新目標(biāo)網(wǎng)絡(luò)的參數(shù);
     (11)   End
     (12) End
    下載: 導(dǎo)出CSV

    表  1  仿真參數(shù)設(shè)置

    參數(shù)名參數(shù)值參數(shù)名參數(shù)值
    AI質(zhì)檢設(shè)備數(shù)量 N[6, 14]MEC服務(wù)器CPU頻率 f c[4, 8] GHz
    任務(wù)數(shù)據(jù)量大小 di[30, 50] KB設(shè)備的CPU頻率 f l0.5 GHz
    任務(wù)所需計算資源大小 ki[1 800, 2 600] cycle/Byte設(shè)備的傳輸功率 pn25 dBm
    子信道帶寬 B1 MHz高斯噪聲功率譜密度 N0–174 dBm/Hz
    時隙長度 Ts100 ms經(jīng)驗池大小200 000
    回合周期數(shù) T1 000溢出懲罰參數(shù) ξ10
    折扣因子$\gamma $0.99路徑損耗常數(shù)${\beta _1}$10–12.7
    任務(wù)隊列最大長度10路徑損耗指數(shù)${\beta _2}$3
    設(shè)備任務(wù)平均到達(dá)率 λ[4, 10] s–1設(shè)備到基站距離d[0,500] m
    下載: 導(dǎo)出CSV

    表  2  算法參數(shù)設(shè)置

    網(wǎng)絡(luò)參數(shù)名參數(shù)值
    Actor學(xué)習(xí)率[10–5, 10–4]
    隱藏層個數(shù)3
    隱藏層神經(jīng)元數(shù)量64, 64, 64
    激活函數(shù)LeakyReLU, Softmax, Sigmoid
    軟替換策略參數(shù) ε0.01
    Critic學(xué)習(xí)率[10–5, 10–4]
    隱藏層個數(shù)3
    隱藏層神經(jīng)元數(shù)量64, 64, 64
    激活函數(shù)LeakyReLU, Tanh
    軟替換策略參數(shù) ε0.01
    下載: 導(dǎo)出CSV
  • [1] 周華, 鄭榮, 肖榮. 工業(yè)場景下AI質(zhì)檢關(guān)鍵技術(shù)及平臺架構(gòu)研究[J]. 現(xiàn)代信息科技, 2022, 6(5): 149–151,156. doi: 10.19850/j.cnki.2096-4706.2022.05.039.

    ZHOU Hua, ZHENG Rong, and XIAO Rong. Research on key technology and platform architecture of AI quality inspection under industrial scene[J]. Modern Information Technology, 2022, 6(5): 149–151,156. doi: 10.19850/j.cnki.2096-4706.2022.05.039.
    [2] 蔣音. 深度學(xué)習(xí)技術(shù)開啟工業(yè)AI質(zhì)檢新范式[J]. 大數(shù)據(jù)時代, 2022(11): 38–48.

    JIANG Yin. Deep learning offers a new paradigm of quality inspection supported by industrial AI[J]. Big Data Time, 2022(11): 38–48.
    [3] DAI Yueyue, ZHANG Ke, MAHARJAN S, et al. Deep reinforcement learning for stochastic computation offloading in digital twin networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 4968–4977. doi: 10.1109/TII.2020.3016320.
    [4] 胡致遠(yuǎn), 胡文前, 李香, 等. 面向業(yè)務(wù)可達(dá)性的廣域工業(yè)互聯(lián)網(wǎng)調(diào)度算法研究[J]. 電子與信息學(xué)報, 2021, 43(9): 2608–2616. doi: 10.11999/JEIT200583.

    HU Zhiyuan, HU Wenqian, LI Xiang, et al. Research on wide area industrial internet scheduling algorithm based on service reachability[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2608–2616. doi: 10.11999/JEIT200583.
    [5] BAHRAMI M. Cloud computing for emerging mobile cloud apps[C]. 2015 3rd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, San Francisco, USA, 2015: 4–5.
    [6] ZHANG Fan, HAN Guanjie, LIU Li, et al. Deep reinforcement learning based cooperative partial task offloading and resource allocation for IIoT applications[J]. IEEE Transactions on Network Science and Engineering, 2022: 1.
    [7] MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201.
    [8] 李一倩, 劉留, 李慧婷, 等. 工業(yè)物聯(lián)網(wǎng)無線信道特性研究[J]. 物聯(lián)網(wǎng)學(xué)報, 2019, 3(4): 34–47. doi: 10.11959/j.issn.2096-3750.2019.00130.

    LI Yiqian, LIU Liu, LI Huiting, et al. Research on characteristics of industrial IoT wireless channel[J]. Chinese Journal on Internet of Things, 2019, 3(4): 34–47. doi: 10.11959/j.issn.2096-3750.2019.00130.
    [9] 張克, 劉留, 袁澤, 等. 工業(yè)物聯(lián)網(wǎng)無線信道與噪聲特性[J]. 電信科學(xué), 2018, 34(8): 87–97. doi: 10.11959/j.issn.1000-0801.2018217.

    ZHANG Ke, LIU Liu, YUAN Ze, et al. Wireless channel and noise characteristics in industrial internet of things[J]. Telecommunications Science, 2018, 34(8): 87–97. doi: 10.11959/j.issn.1000-0801.2018217.
    [10] GUO Kai, YANG Mingcong, ZHANG Yongbing, et al. Joint computation offloading and bandwidth assignment in cloud-assisted edge computing[J]. IEEE Transactions on Cloud Computing, 2022, 10(1): 451–460. doi: 10.1109/TCC.2019.2950395.
    [11] YANG Lei, LIU Bo, CAO Jiannong, et al. Joint computation partitioning and resource allocation for latency sensitive applications in mobile edge clouds[J]. IEEE Transactions on Services Computing, 2021, 14(5): 1439–1452. doi: 10.1109/TSC.2018.2890603.
    [12] 劉斐, 曹鈺杰, 章國安. 車聯(lián)網(wǎng)場景下移動邊緣計算協(xié)作式資源分配策略[J]. 電訊技術(shù), 2021, 61(7): 858–864. doi: 10.3969/j.issn.1001-893x.2021.07.012.

    LIU Fei, CAO Yujie, and ZHANG Guoan. Collaborative resource allocation strategy for mobile edge computing in vehicular networks[J]. Telecommunication Engineering, 2021, 61(7): 858–864. doi: 10.3969/j.issn.1001-893x.2021.07.012.
    [13] 周天清, 曾新亮, 胡海琴. 基于混合粒子群算法的計算卸載成本優(yōu)化[J]. 電子與信息學(xué)報, 2022, 44(9): 3065–3074. doi: 10.11999/JEIT211390.

    ZHOU Tianqing, ZENG Xinliang, and HU Haiqin. Computation offloading cost optimization based on hybrid particle swarm optimization algorithm[J]. Journal of Electronics &Information Technology, 2022, 44(9): 3065–3074. doi: 10.11999/JEIT211390.
    [14] 周天清, 胡海琴, 曾新亮. NOMA-MEC系統(tǒng)中基于改進(jìn)遺傳算法的協(xié)作式計算卸載與資源管理[J]. 電子與信息學(xué)報, 2022, 44(9): 3014–3023. doi: 10.11999/JEIT220306.

    ZHOU Tianqing, HU Haiqin, and ZENG Xinliang. Cooperative computation offloading and resource management based on improved genetic algorithm in NOMA-MEC systems[J]. Journal of Electronics &Information Technology, 2022, 44(9): 3014–3023. doi: 10.11999/JEIT220306.
    [15] LUO Quyuan, LI Changle, LUAN T H, et al. Collaborative data scheduling for vehicular edge computing via deep reinforcement learning[J]. IEEE Internet of Things Journal, 2020, 7(10): 9637–9650. doi: 10.1109/JIOT.2020.2983660.
    [16] ZHANG Weiting, YANG Dong, PENG Haixia, et al. Deep reinforcement learning based resource management for DNN inference in industrial IoT[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7605–7618. doi: 10.1109/TVT.2021.3068255.
    [17] CHEN Ying, LIU Zhiyong, ZHANG Yongchao, et al. Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 4925–4934. doi: 10.1109/TII.2020.3028963.
    [18] YU Shuai, CHEN Xu, ZHOU Zhi, et al. When deep reinforcement learning meets federated learning: Intelligent multitimescale resource management for multiaccess edge computing in 5G ultradense network[J]. IEEE Internet of Things Journal, 2021, 8(4): 2238–2251. doi: 10.1109/JIOT.2020.3026589.
    [19] SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: Bradford Books, 2018: 62–64.
    [20] LIU Binghong, LIU Chenxi and PENG Mugen. Computation offloading and resource allocation in unmanned aerial vehicle networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4981–4995. doi: 10.1109/TVT.2022.3222907.
    [21] DAI Bin, NIU Jianwei, REN Tao, et al. Toward mobility-aware computation offloading and resource allocation in end–edge–cloud orchestrated computing[J]. IEEE Internet of Things Journal, 2022, 9(19): 19450–19462. doi: 10.1109/JIOT.2022.3168036.
    [22] QIAO Guanhua, LENG Supeng, MAHARJAN S, et al. Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2020, 7(1): 247–257. doi: 10.1109/JIOT.2019.2945640.
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數(shù):  827
  • HTML全文瀏覽量:  606
  • PDF下載量:  105
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-03-03
  • 修回日期:  2023-08-15
  • 網(wǎng)絡(luò)出版日期:  2023-08-17
  • 刊出日期:  2024-02-29

目錄

    /

    返回文章
    返回