基于用戶竊聽的MU-MISO反向散射通信系統(tǒng)魯棒資源分配算法
doi: 10.11999/JEIT221508 cstr: 32379.14.JEIT221508
-
1.
重慶郵電大學通信與信息工程學院 重慶 400065
-
2.
重慶金美通信有限責任公司 重慶 400030
-
3.
貴州大學現(xiàn)代制造技術(shù)教育部重點實驗室 貴陽 550025
Robust Resource Allocation Algorithm in MU-MISO Backscatter Communication Systems with Eavesdroppers
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Chongqing Jinmei Communication Co. LTD., Chongqing 400030, China
-
3.
Key Laboratory of Advanced Manufacturing Technology of Ministry of Education, GuiZhou University, Guiyang 550025, China
-
摘要: 針對反向散射通信系統(tǒng)信道估計不準、信息容易被竊聽等問題,該文提出一種基于用戶竊聽的多用戶-多輸入單輸出(MU-MISO)反向散射通信系統(tǒng)魯棒資源分配算法,以提高系統(tǒng)傳輸魯棒性與信息安全性。首先,考慮基站最大功率、時間分配、信道不確定性、能量收集和保密率等約束,建立一個MU-MISO的反向散射通信系統(tǒng)魯棒資源分配問題。其次,基于非線性能量收集模型和有界球形信道不確定性模型,利用變量松弛法和S過程將原NP-hard問題轉(zhuǎn)化為確定性問題,隨后利用連續(xù)凸近似、半正定松弛與塊坐標下降法將其轉(zhuǎn)化為凸優(yōu)化問題求解。仿真結(jié)果表明,與傳統(tǒng)非魯棒算法對比,所提算法具有較高的系統(tǒng)容量和較低的中斷概率。Abstract: Focusing on the problems of inaccurate channel estimation and easy eavesdropping of information in backscatter communication systems, a robust resource allocation algorithm for Multi-User Multi-Input Single-Output (MU-MISO) backscatter communication systems based on user eavesdropping is proposed to improve the transmission robustness and information security of the systems. Firstly, considering the constraints on the maximum power of the base station, time allocation, channel uncertainties, energy collection, and security rate, a robust resource allocation problem for MU-MISO backscatter communication systems is established. Secondly, based on the nonlinear energy harvesting model and the bounded spherical uncertainty model, the original NP-hard problem is transformed into a deterministic one by using the variable relaxation and S-Procedure methods, and then it is transformed into a convex optimization problem by using successive convex approximation, semi-positive definite relaxation and block coordinate descent methods. Simulation results show that the proposed algorithm has higher system capacity and lower outage probability compared with the traditional non-robust algorithm.
-
算法1 基于塊坐標下降法的魯棒資源分配迭代算法 1. 初始化系統(tǒng)參數(shù):$ K,\,M,\,{\beta _k},\,E_k^{\text{C}},\,\sigma _k^2,\,\sigma _e^2,\,T,\,\bar x_k^2,\,\bar x_k^3,\,\bar y_k^1,\,\bar \gamma _k^{\text{E}},\,\alpha _k^{\left( 0 \right)},\,{R^{{\text{sum}}(0)}} $;閾值:$r_k^{\min },\,{P^{\max }}$;估計誤差上界:$\varepsilon $;收斂精度:$ \varpi $;
初始化迭代次數(shù):$l{\text{ = }}1$。2. Repeat 3. 固定$ \alpha _k^{\left( 0 \right)} $,求解子問題1,獲得$ {\boldsymbol{W}}_k^{\left( l \right) * },\,{{\boldsymbol{Z}}^{\left( l \right) * }} $。 if $ {\boldsymbol{W}}_k^{\left( l \right) * } $滿足$ \text{Rank}\left({{\boldsymbol{W}}}_{k}^{\left(l\right)\ast }\right)=1 $,可以通過特征值分解獲得最優(yōu)波束向量,即${\boldsymbol{W}}_k^{\left( l \right) * }{\text{ = }}{\boldsymbol{w}}_k^{\left( l \right) * }{\boldsymbol{w}}_k^{\left( l \right) * {\text{H}}}$。 else if ${\boldsymbol{W}}_k^{\left( l \right) * }$的秩大于1,可以通過高斯隨機化獲得最優(yōu)向量。 4. 固定${\boldsymbol{W}}_k^{\left( l \right) * },\,{{\boldsymbol{Z}}^{\left( l \right) * }}$,求解子問題2,獲得$ \alpha _k^{\left( l \right) * } $。 5. 計算$ {R^{{\text{sum}}(l)}} $,并且更新迭代次數(shù)$l = l + 1$。 6. Until $ \left| {{R^{{\text{sum}}(l)}} - {R^{{\text{sum}}(l - 1)}}} \right| \le \varpi $。 7. Return $ {\boldsymbol{w}}_k^{{\text{opt}}}{\text{ = }}{\boldsymbol{w}}_k^{\left( l \right) * },\,{{\boldsymbol{Z}}^{{\text{opt}}}} = {{\boldsymbol{Z}}^{\left( l \right) * }},\,\alpha _k^{{\text{opt}}} = \alpha _k^{\left( l \right) * },\,{R^{{\text{sum}}}} = {R^{{\text{sum}}(l)}} $。 下載: 導(dǎo)出CSV
-
[1] 徐勇軍, 楊浩克, 葉迎暉, 等. 反向散射通信網(wǎng)絡(luò)資源分配綜述[J]. 物聯(lián)網(wǎng)學報, 2021, 5(3): 56–69. doi: 10.11959/j.issn.2096-3750.2021.00215XU Yongjun, YANG Haoke, YE Yinghui, et al. A survey on resource allocation in backscatter communication networks[J]. Chinese Journal on Internet of Things, 2021, 5(3): 56–69. doi: 10.11959/j.issn.2096-3750.2021.00215 [2] VAN HUYNH N, HOANG D T, LU Xiao, et al. Ambient backscatter communications: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2889–2922. doi: 10.1109/COMST.2018.2841964 [3] LONG Ruizhe, LIANG Yingchang, GUO Huayan, et al. Symbiotic radio: A new communication paradigm for passive internet of things[J]. IEEE Internet of Things Journal, 2020, 7(2): 1350–1363. doi: 10.1109/JIOT.2019.2954678 [4] WANG Pu, YAN Zheng, WANG Ning, et al. Resource allocation optimization for secure multidevice wirelessly powered backscatter communication with artificial noise[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7794–7809. doi: 10.1109/TWC.2022.3162137 [5] YANG Haohang, YE Yinghui, and CHU Xiaoli. Max-min energy-efficient resource allocation for wireless powered backscatter networks[J]. IEEE Wireless Communications Letters, 2020, 9(5): 688–692. doi: 10.1109/LWC.2020.2965942 [6] XIAO Sa, GUO Huayan, and LIANG Yinghchang. Resource allocation for full-duplex-enabled cognitive backscatter networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3222–3235. doi: 10.1109/TWC.2019.2912203 [7] KE Feng, PENG Yiming, PENG Yingru, et al. Resource allocation for MIMO full-duplex backscatter assisted wireless-powered communication network with finite alphabet inputs[J]. IEEE Transactions on Communications, 2021, 69(2): 1275–1289. doi: 10.1109/TCOMM.2020.3035233 [8] YE Yinghui, SHI Liqin, HU R Q, et al. Energy-efficient resource allocation for wirelessly powered backscatter communications[J]. IEEE Communications Letters, 2019, 23(8): 1418–1422. doi: 10.1109/LCOMM.2019.2920834 [9] XU Yongjun, GU Bowen, HU R Q, et al. Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6200–6205. doi: 10.1109/TVT.2021.3077094 [10] ZHUANG Yuandong, LI Xi, JI Hong, et al. Optimal resource allocation for RF-powered underlay cognitive radio networks with ambient backscatter communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15216–15228. doi: 10.1109/TVT.2020.3037152 [11] XU Yongjun and GUI Guan. Optimal resource allocation for wireless powered multi-carrier backscatter communication networks[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1191–1195. doi: 10.1109/LWC.2020.2985010 [12] YANG Gang, YUAN Dongdong, LIANG Yingchang, et al. Optimal resource allocation in full-duplex ambient backscatter communication networks for wireless-powered IoT[J]. IEEE Internet of Things Journal, 2019, 6(2): 2612–2625. doi: 10.1109/JIOT.2018.2872515 [13] LI Dong. Backscatter communication via harvest-then-transmit relaying[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6843–6847. doi: 10.1109/TVT.2020.2991227 [14] WANG Pu, YAN Zheng, and ZENG Kai. BCAuth: Physical layer enhanced authentication and attack tracing for backscatter communications[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2818–2834. doi: 10.1109/TIFS.2022.3195407 [15] LI Xinrui, WANG Wei, ZHANG Miao, et al. Robust secure beamforming for SWIPT-aided relay systems with full-duplex receiver and imperfect CSI[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1867–1878. doi: 10.1109/TVT.2019.2961449 [16] LI Dong. Backscatter communication powered by selective relaying[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 14037–14042. doi: 10.1109/TVT.2020.3029340 [17] ZHOU Shaoqing, XU Wei, WANG Kezhi, et al. Ergodic rate analysis of cooperative ambient backscatter communication[J]. IEEE Wireless Communications Letters, 2019, 8(6): 1679–1682. doi: 10.1109/LWC.2019.2936196 [18] XU Yongjun, ZHAO Xiaohui, and LIANG Yingchang. Robust power control and beamforming in cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1834–1857. doi: 10.1109/COMST.2015.2425040 [19] XU Yongjun, XIE Hao, LIANG Chengchao, et al. Robust secure energy-efficiency optimization in SWIPT-aided heterogeneous networks with a nonlinear energy-harvesting model[J]. IEEE Internet of Things Journal, 2021, 8(19): 14908–14919. doi: 10.1109/JIOT.2021.3072965 [20] WANG Shaohang and WANG Baoyun. Robust secure transmit design in MIMO channels with simultaneous wireless information and power transfer[J]. IEEE Signal Processing Letters, 2015, 22(11): 2147–2151. doi: 10.1109/LSP.2015.2464791 [21] WANG Feng, XU Jie, and DING Zhiguo. Multi-antenna NOMA for computation offloading in multiuser mobile edge computing systems[J]. IEEE Transactions on Communications, 2019, 67(3): 2450–2463. doi: 10.1109/TCOMM.2018.2881725 [22] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004. [23] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019 [24] BIBBY J. Axiomatisations of the average and a further generalisation of monotonic sequences[J]. Glasgow Mathematical Journal, 1974, 15(1): 63–65. doi: 10.1017/S0017089500002135 [25] LU Yang, XIONG Ke, FAN Pingyi, et al. Coordinated beamforming with artificial noise for secure SWIPT under non-linear EH model: Centralized and distributed designs[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(7): 1544–1563. doi: 10.1109/JSAC.2018.2824759 -