一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于用戶竊聽的MU-MISO反向散射通信系統(tǒng)魯棒資源分配算法

徐勇軍 徐然 周繼華 陳量 黃東

徐勇軍, 徐然, 周繼華, 陳量, 黃東. 基于用戶竊聽的MU-MISO反向散射通信系統(tǒng)魯棒資源分配算法[J]. 電子與信息學報, 2024, 46(1): 204-212. doi: 10.11999/JEIT221508
引用本文: 徐勇軍, 徐然, 周繼華, 陳量, 黃東. 基于用戶竊聽的MU-MISO反向散射通信系統(tǒng)魯棒資源分配算法[J]. 電子與信息學報, 2024, 46(1): 204-212. doi: 10.11999/JEIT221508
XU Yongjun, XU Ran, ZHOU Jihua, CHEN Liang, HUANG Dong. Robust Resource Allocation Algorithm in MU-MISO Backscatter Communication Systems with Eavesdroppers[J]. Journal of Electronics & Information Technology, 2024, 46(1): 204-212. doi: 10.11999/JEIT221508
Citation: XU Yongjun, XU Ran, ZHOU Jihua, CHEN Liang, HUANG Dong. Robust Resource Allocation Algorithm in MU-MISO Backscatter Communication Systems with Eavesdroppers[J]. Journal of Electronics & Information Technology, 2024, 46(1): 204-212. doi: 10.11999/JEIT221508

基于用戶竊聽的MU-MISO反向散射通信系統(tǒng)魯棒資源分配算法

doi: 10.11999/JEIT221508 cstr: 32379.14.JEIT221508
基金項目: 國家自然科學基金(62271094),重慶市教委科學技術(shù)研究項目(KJZD-K202200601),重慶市自然科學基金創(chuàng)新發(fā)展聯(lián)合基金重點項目(CSTB2022NSCQ-LZX0009)
詳細信息
    作者簡介:

    徐勇軍:男,副教授,博士生導(dǎo)師,研究方向為反向散射通信、魯棒資源分配

    徐然:男,碩士生,研究方向為反向散射、魯棒資源分配

    周繼華:男,研究員,博士生導(dǎo)師,研究方向為無線網(wǎng)絡(luò)、資源分配等

    陳量:男,正高級工程師,研究方向為軟件定義網(wǎng)絡(luò)技術(shù)等

    通訊作者:

    徐勇軍 xuyj@cqupt.edu.cn

  • 中圖分類號: TN929

Robust Resource Allocation Algorithm in MU-MISO Backscatter Communication Systems with Eavesdroppers

Funds: The National Natural Science Foundation of China (62271094), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601), The Key Fund of Natural Science Foundation of Chongqing (CSTB2022NSCQ-LZX0009)
  • 摘要: 針對反向散射通信系統(tǒng)信道估計不準、信息容易被竊聽等問題,該文提出一種基于用戶竊聽的多用戶-多輸入單輸出(MU-MISO)反向散射通信系統(tǒng)魯棒資源分配算法,以提高系統(tǒng)傳輸魯棒性與信息安全性。首先,考慮基站最大功率、時間分配、信道不確定性、能量收集和保密率等約束,建立一個MU-MISO的反向散射通信系統(tǒng)魯棒資源分配問題。其次,基于非線性能量收集模型和有界球形信道不確定性模型,利用變量松弛法和S過程將原NP-hard問題轉(zhuǎn)化為確定性問題,隨后利用連續(xù)凸近似、半正定松弛與塊坐標下降法將其轉(zhuǎn)化為凸優(yōu)化問題求解。仿真結(jié)果表明,與傳統(tǒng)非魯棒算法對比,所提算法具有較高的系統(tǒng)容量和較低的中斷概率。
  • 圖  1  反向散射通信物理層安全網(wǎng)絡(luò)

    圖  2  本文算法收斂性能

    圖  3  最大發(fā)射功率和反射系數(shù)對吞吐量的影響

    圖  4  信道不確定性與噪聲功率對保密率的影響

    圖  5  反射系數(shù)與信道不確定性對保密吞吐量的影響

    圖  6  信道不確定性與反射系數(shù)對保密吞吐量的影響

    圖  7  信道不確定性對中斷概率的影響

    算法1 基于塊坐標下降法的魯棒資源分配迭代算法
     1. 初始化系統(tǒng)參數(shù):$ K,\,M,\,{\beta _k},\,E_k^{\text{C}},\,\sigma _k^2,\,\sigma _e^2,\,T,\,\bar x_k^2,\,\bar x_k^3,\,\bar y_k^1,\,\bar \gamma _k^{\text{E}},\,\alpha _k^{\left( 0 \right)},\,{R^{{\text{sum}}(0)}} $;閾值:$r_k^{\min },\,{P^{\max }}$;估計誤差上界:$\varepsilon $;收斂精度:$ \varpi $;
     初始化迭代次數(shù):$l{\text{ = }}1$。
     2. Repeat
     3.  固定$ \alpha _k^{\left( 0 \right)} $,求解子問題1,獲得$ {\boldsymbol{W}}_k^{\left( l \right) * },\,{{\boldsymbol{Z}}^{\left( l \right) * }} $。
         if $ {\boldsymbol{W}}_k^{\left( l \right) * } $滿足$ \text{Rank}\left({{\boldsymbol{W}}}_{k}^{\left(l\right)\ast }\right)=1 $,可以通過特征值分解獲得最優(yōu)波束向量,即${\boldsymbol{W}}_k^{\left( l \right) * }{\text{ = }}{\boldsymbol{w}}_k^{\left( l \right) * }{\boldsymbol{w}}_k^{\left( l \right) * {\text{H}}}$。
         else if ${\boldsymbol{W}}_k^{\left( l \right) * }$的秩大于1,可以通過高斯隨機化獲得最優(yōu)向量。
     4.  固定${\boldsymbol{W}}_k^{\left( l \right) * },\,{{\boldsymbol{Z}}^{\left( l \right) * }}$求解子問題2,獲得$ \alpha _k^{\left( l \right) * } $。
     5.  計算$ {R^{{\text{sum}}(l)}} $,并且更新迭代次數(shù)$l = l + 1$。
     6. Until $ \left| {{R^{{\text{sum}}(l)}} - {R^{{\text{sum}}(l - 1)}}} \right| \le \varpi $。
     7. Return $ {\boldsymbol{w}}_k^{{\text{opt}}}{\text{ = }}{\boldsymbol{w}}_k^{\left( l \right) * },\,{{\boldsymbol{Z}}^{{\text{opt}}}} = {{\boldsymbol{Z}}^{\left( l \right) * }},\,\alpha _k^{{\text{opt}}} = \alpha _k^{\left( l \right) * },\,{R^{{\text{sum}}}} = {R^{{\text{sum}}(l)}} $。
    下載: 導(dǎo)出CSV
  • [1] 徐勇軍, 楊浩克, 葉迎暉, 等. 反向散射通信網(wǎng)絡(luò)資源分配綜述[J]. 物聯(lián)網(wǎng)學報, 2021, 5(3): 56–69. doi: 10.11959/j.issn.2096-3750.2021.00215

    XU Yongjun, YANG Haoke, YE Yinghui, et al. A survey on resource allocation in backscatter communication networks[J]. Chinese Journal on Internet of Things, 2021, 5(3): 56–69. doi: 10.11959/j.issn.2096-3750.2021.00215
    [2] VAN HUYNH N, HOANG D T, LU Xiao, et al. Ambient backscatter communications: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2889–2922. doi: 10.1109/COMST.2018.2841964
    [3] LONG Ruizhe, LIANG Yingchang, GUO Huayan, et al. Symbiotic radio: A new communication paradigm for passive internet of things[J]. IEEE Internet of Things Journal, 2020, 7(2): 1350–1363. doi: 10.1109/JIOT.2019.2954678
    [4] WANG Pu, YAN Zheng, WANG Ning, et al. Resource allocation optimization for secure multidevice wirelessly powered backscatter communication with artificial noise[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7794–7809. doi: 10.1109/TWC.2022.3162137
    [5] YANG Haohang, YE Yinghui, and CHU Xiaoli. Max-min energy-efficient resource allocation for wireless powered backscatter networks[J]. IEEE Wireless Communications Letters, 2020, 9(5): 688–692. doi: 10.1109/LWC.2020.2965942
    [6] XIAO Sa, GUO Huayan, and LIANG Yinghchang. Resource allocation for full-duplex-enabled cognitive backscatter networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3222–3235. doi: 10.1109/TWC.2019.2912203
    [7] KE Feng, PENG Yiming, PENG Yingru, et al. Resource allocation for MIMO full-duplex backscatter assisted wireless-powered communication network with finite alphabet inputs[J]. IEEE Transactions on Communications, 2021, 69(2): 1275–1289. doi: 10.1109/TCOMM.2020.3035233
    [8] YE Yinghui, SHI Liqin, HU R Q, et al. Energy-efficient resource allocation for wirelessly powered backscatter communications[J]. IEEE Communications Letters, 2019, 23(8): 1418–1422. doi: 10.1109/LCOMM.2019.2920834
    [9] XU Yongjun, GU Bowen, HU R Q, et al. Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6200–6205. doi: 10.1109/TVT.2021.3077094
    [10] ZHUANG Yuandong, LI Xi, JI Hong, et al. Optimal resource allocation for RF-powered underlay cognitive radio networks with ambient backscatter communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15216–15228. doi: 10.1109/TVT.2020.3037152
    [11] XU Yongjun and GUI Guan. Optimal resource allocation for wireless powered multi-carrier backscatter communication networks[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1191–1195. doi: 10.1109/LWC.2020.2985010
    [12] YANG Gang, YUAN Dongdong, LIANG Yingchang, et al. Optimal resource allocation in full-duplex ambient backscatter communication networks for wireless-powered IoT[J]. IEEE Internet of Things Journal, 2019, 6(2): 2612–2625. doi: 10.1109/JIOT.2018.2872515
    [13] LI Dong. Backscatter communication via harvest-then-transmit relaying[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6843–6847. doi: 10.1109/TVT.2020.2991227
    [14] WANG Pu, YAN Zheng, and ZENG Kai. BCAuth: Physical layer enhanced authentication and attack tracing for backscatter communications[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2818–2834. doi: 10.1109/TIFS.2022.3195407
    [15] LI Xinrui, WANG Wei, ZHANG Miao, et al. Robust secure beamforming for SWIPT-aided relay systems with full-duplex receiver and imperfect CSI[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1867–1878. doi: 10.1109/TVT.2019.2961449
    [16] LI Dong. Backscatter communication powered by selective relaying[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 14037–14042. doi: 10.1109/TVT.2020.3029340
    [17] ZHOU Shaoqing, XU Wei, WANG Kezhi, et al. Ergodic rate analysis of cooperative ambient backscatter communication[J]. IEEE Wireless Communications Letters, 2019, 8(6): 1679–1682. doi: 10.1109/LWC.2019.2936196
    [18] XU Yongjun, ZHAO Xiaohui, and LIANG Yingchang. Robust power control and beamforming in cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1834–1857. doi: 10.1109/COMST.2015.2425040
    [19] XU Yongjun, XIE Hao, LIANG Chengchao, et al. Robust secure energy-efficiency optimization in SWIPT-aided heterogeneous networks with a nonlinear energy-harvesting model[J]. IEEE Internet of Things Journal, 2021, 8(19): 14908–14919. doi: 10.1109/JIOT.2021.3072965
    [20] WANG Shaohang and WANG Baoyun. Robust secure transmit design in MIMO channels with simultaneous wireless information and power transfer[J]. IEEE Signal Processing Letters, 2015, 22(11): 2147–2151. doi: 10.1109/LSP.2015.2464791
    [21] WANG Feng, XU Jie, and DING Zhiguo. Multi-antenna NOMA for computation offloading in multiuser mobile edge computing systems[J]. IEEE Transactions on Communications, 2019, 67(3): 2450–2463. doi: 10.1109/TCOMM.2018.2881725
    [22] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [23] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019
    [24] BIBBY J. Axiomatisations of the average and a further generalisation of monotonic sequences[J]. Glasgow Mathematical Journal, 1974, 15(1): 63–65. doi: 10.1017/S0017089500002135
    [25] LU Yang, XIONG Ke, FAN Pingyi, et al. Coordinated beamforming with artificial noise for secure SWIPT under non-linear EH model: Centralized and distributed designs[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(7): 1544–1563. doi: 10.1109/JSAC.2018.2824759
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數(shù):  303
  • HTML全文瀏覽量:  207
  • PDF下載量:  70
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-09-24
  • 網(wǎng)絡(luò)出版日期:  2023-10-18
  • 刊出日期:  2024-01-17

目錄

    /

    返回文章
    返回