一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于二值和三值憶阻器模型構(gòu)建的混沌系統(tǒng)的特性分析

王曉媛 田遠澤 程知群

王曉媛, 田遠澤, 程知群. 基于二值和三值憶阻器模型構(gòu)建的混沌系統(tǒng)的特性分析[J]. 電子與信息學報, 2023, 45(12): 4556-4565. doi: 10.11999/JEIT221083
引用本文: 王曉媛, 田遠澤, 程知群. 基于二值和三值憶阻器模型構(gòu)建的混沌系統(tǒng)的特性分析[J]. 電子與信息學報, 2023, 45(12): 4556-4565. doi: 10.11999/JEIT221083
WANG Xiaoyuan, TIAN Yuanze, CHENG Zhiqun. Characteristic Analysis of Chaotic System Based on Binary-valued and Tri-valued Memristor Models[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4556-4565. doi: 10.11999/JEIT221083
Citation: WANG Xiaoyuan, TIAN Yuanze, CHENG Zhiqun. Characteristic Analysis of Chaotic System Based on Binary-valued and Tri-valued Memristor Models[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4556-4565. doi: 10.11999/JEIT221083

基于二值和三值憶阻器模型構(gòu)建的混沌系統(tǒng)的特性分析

doi: 10.11999/JEIT221083 cstr: 32379.14.JEIT221083
基金項目: 國家自然科學基金(61871429),浙江省自然科學基金(LY18F010012),科技部基地平臺項目(D20011)
詳細信息
    作者簡介:

    王曉媛:女,教授,研究方向為新型記憶元件(憶阻器、憶容器和憶感器)理論及應用,非線性電路系統(tǒng)設計和信息加密算法

    田遠澤:男,碩士生,研究方向為混沌系統(tǒng)與圖像加密算法

    程知群:男,教授,研究方向為射頻集成電路設計、毫米波高速通信系統(tǒng)

    通訊作者:

    王曉媛 youyuan-0213@163.com

  • 中圖分類號: TN918.1

Characteristic Analysis of Chaotic System Based on Binary-valued and Tri-valued Memristor Models

Funds: The National Natural Science Foundation of China (61871429), The Natural Science Foundation of Zhejiang Province (LY18F010012), The Project of Ministry of Science and Technology of China (D20011)
  • 摘要: 近年來,基于憶阻器的非線性動力學問題備受關(guān)注。該文以二值和三值憶阻器為例分析了二值和多值憶阻器對于混沌系統(tǒng)動力特性的影響。首先,將二值憶阻器引入Chen系統(tǒng),構(gòu)建了一個4維的基于二值憶阻器的混沌系統(tǒng)(BMCS)。其次,使用三值憶阻器替換上述系統(tǒng)中的二值憶阻器,構(gòu)建一個4維的基于三值憶阻器的混沌系統(tǒng)(TMCS)。通過理論分析與數(shù)值仿真,從多個角度對比了兩個混沌系統(tǒng)之間的動力學特性差異,如Lyapunov指數(shù)、分岔圖、系統(tǒng)的平衡點、系統(tǒng)穩(wěn)定性、對初值的敏感性以及系統(tǒng)的復雜度分析等。結(jié)果表明,兩個基于憶阻器的混沌系統(tǒng)都具有無窮多個平衡點,二者產(chǎn)生的吸引子均為隱藏吸引子,且都存在的暫態(tài)混沌現(xiàn)象,但三值憶阻混沌系統(tǒng)具有超混沌特性,且相比二值憶阻混沌系統(tǒng)具有更強的初值敏感性以及更大的參數(shù)取值區(qū)間。分析得出基于三值憶阻器構(gòu)建的混沌系統(tǒng)比基于二值憶阻器的混沌系統(tǒng)能夠產(chǎn)生更為復雜的動力學特性,混沌信號也更為復雜。
  • 圖  1  二值憶阻器特性曲線

    圖  2  三值憶阻器特性曲線

    圖  3  BMCS吸引子相圖

    圖  4  TMCS吸引子相圖

    圖  5  BMCS對應的Lyapunov指數(shù)譜

    圖  6  BMCS對應的分岔圖

    圖  7  BMCS對應的x-z平面吸引子相圖

    圖  8  TMCS對應的Lyapunov指數(shù)譜

    圖  9  TMCS對應的分岔圖

    圖  10  TMCS對應的吸引子相圖

    圖  11  BMCS動力學地圖

    圖  12  TMCS動力學地圖

    圖  13  BMCS暫態(tài)混沌時序圖及相圖

    圖  14  TMCS暫態(tài)混沌時序圖及相圖

    圖  15  TMCS超混沌時序圖及相圖

    圖  16  BMCS的C0和SE復雜度

    圖  17  TMCS的C0和SE復雜度

    表  1  混沌系統(tǒng)的Lyapunov指數(shù)及Lyapunov維數(shù)

    混沌系統(tǒng)公式LE1LE2LE3LE4DL超混沌
    BMCS式(5)2.3090–0.0017–0.0795–18.22813.1222
    TMCS式(6)2.48180.15780.0017–18.64133.1417
    下載: 導出CSV

    表  2  序列相關(guān)性的對照比較

    混沌系統(tǒng)X1,X2的相關(guān)性Y1,Y2的相關(guān)性Z1,Z2的相關(guān)性W1,W2的相關(guān)性
    BMCS–0.0122–0.0137–0.02070.1530
    TMCS–0.0085–0.00680.0017–0.0055
    下載: 導出CSV

    表  3  不同參數(shù)c對應的Lyapunov指數(shù)值

    參數(shù)cLE1LE2LE3LE4系統(tǒng)狀態(tài)
    252.30900.0007–0.0329–23.8567混沌
    312.3090–0.0017–0.0795–18.2281混沌
    360.0068–0.0111–5.4995–5.4962周期
    下載: 導出CSV

    表  4  不同參數(shù)下TMCS對應的Lyapunov指數(shù)值

    參數(shù)cLE1LE2LE3LE4系統(tǒng)狀態(tài)
    252.2273–0.0066–0.0628–18.6413混沌
    312.48180.15780.0017–18.6413超混沌
    360.0087–0.0090–5.5039–5.4958周期
    下載: 導出CSV
  • [1] WANG Xiaoyuan, GAO Meng, IU H H C, et al. Tri-valued memristor-based hyper-chaotic system with hidden and coexistent attractors[J]. Chaos, Solitons & Fractals, 2022, 159: 112177. doi: 10.1016/j.chaos.2022.112177
    [2] GUO Mei, YANG Wenyan, XUE Youbao, et al. Multistability in a physical memristor-based modified Chua’s circuit[J]. Chaos, 2019, 29(4): 043114. doi: 10.1063/1.5089293
    [3] ZHANG Xinrui, WANG Xiaoyuan, GE Zhenyu, et al. A novel memristive neural network circuit and its application in character recognition[J]. Micromachines, 2022, 13(12): 2074. doi: 10.3390/mi13122074
    [4] ZHOU Lili and TAN Fei. A chaotic secure communication scheme based on synchronization of double-layered and multiple complex networks[J]. Nonlinear Dynamics, 2019, 96(2): 869–883. doi: 10.1007/s11071-019-04828-7
    [5] YANG Sen, TONG Xiaojun, WANG Zhu, et al. Efficient color image encryption algorithm based on 2D coupled chaos and multi-objective optimized S-box[J]. Physica Scripta, 2022, 97(4): 045204. doi: 10.1088/1402-4896/ac59fa
    [6] WANG Xiaoyuan, GAO Meng, MIN Xiaotao, et al. On the use of memristive hyperchaotic system to design color image encryption scheme[J]. IEEE Access, 2020, 8: 182240–182248. doi: 10.1109/ACCESS.2020.3027480
    [7] ITOH M and CHUA L O. Memristor oscillators[J]. International Journal of Bifurcation and Chaos, 2008, 18(11): 3183–3206. doi: 10.1142/S0218127408022354
    [8] TAN Qiwei, ZENG Yicheng, and LI Zhijun. A simple inductor-free memristive circuit with three line equilibria[J]. Nonlinear Dynamics, 2018, 94(3): 1585–1602. doi: 10.1007/s11071-018-4443-3
    [9] 秦銘宏, 賴強, 吳永紅. 具有無窮共存吸引子的簡單憶阻混沌系統(tǒng)的分析與實現(xiàn)[J]. 物理學報, 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593

    QIN Minghong, LAI Qiang, and WU Yonghong. Analysis and implementation of simple four-dimensional memristive chaotic system with infinite coexisting attractors[J]. Acta Physics Sinica, 2022, 71(16): 160502. doi: 10.7498/aps.71.20220593
    [10] WANG Xiaoyuan, YU Jun, JIN Chenxi, et al. Chaotic oscillator based on memcapacitor and meminductor[J]. Nonlinear Dynamics, 2019, 96(1): 161–173. doi: 10.1007/s11071-019-04781-5
    [11] MIN Xiaotao, WANG Xiaoyuan, ZHOU Pengfei, et al. An optimized memristor-based hyperchaotic system with controlled hidden attractors[J]. IEEE Access, 2019, 7: 124641–124646. doi: 10.1109/ACCESS.2019.2938183
    [12] WANG Xiaoyuan, MIN Xiaotao, ZHOU Pengfei, et al. Hyperchaotic circuit based on memristor feedback with multistability and symmetries[J]. Complexity, 2020, 2020: 2620375. doi: 10.1155/2020/2620375
    [13] LAI Qiang, WAN Zhiqiang, KUATE P D K, et al. Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 89: 105341. doi: 10.1016/j.cnsns.2020.105341
    [14] WANG Chunhua, ZHOU Ling, and WU Renping. The design and realization of a hyper-chaotic circuit based on a flux-controlled memristor with linear memductance[J]. Journal of Circuits, Systems and Computers, 2018, 27(3): 1850038. doi: 10.1142/S021812661850038X
    [15] 張貴重, 全旭, 劉嵩. 一個具有超級多穩(wěn)定性的憶阻混沌系統(tǒng)的分析與FPGA實現(xiàn)[J]. 物理學報, 2022, 71(24): 240502. doi: 10.7498/aps.71.20221423

    ZHANG Guizhong, QUAN Xu, and LIU Song. Analysis and FPGA implementation of memristor chaotic system with extreme multistability[J]. Acta Physica Sinica, 2022, 71(24): 240502. doi: 10.7498/aps.71.20221423
    [16] WANG Xiaoyuan, ZHOU Pengfei, JIN Chenxi, et al. Mathematic modeling and circuit implementation on multi-valued memristor[C]. 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020: 1–5.
    [17] WANG Xiaoyuan, ZHANG Xue, and GAO Meng. A novel voltage-controlled tri-valued memristor and its application in chaotic system[J]. Complexity, 2020, 2020: 6949703. doi: 10.1155/2020/6949703
    [18] CHEN Guanrong and UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465–1466. doi: 10.1142/S0218127499001024
    [19] HUA Zhongyun and ZHOU Yicong. Dynamic parameter-control chaotic system[J]. IEEE Transactions on Cybernetics, 2016, 46(12): 3330–3341. doi: 10.1109/TCYB.2015.2504180
    [20] HU Gang, WANG Kejun, and LIU Liangliang. Detection line spectrum of ship radiated noise based on a new 3D chaotic system[J]. Sensors, 2021, 21(5): 1610. doi: 10.3390/s21051610
  • 加載中
圖(17) / 表(4)
計量
  • 文章訪問數(shù):  555
  • HTML全文瀏覽量:  260
  • PDF下載量:  109
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2022-08-17
  • 修回日期:  2023-04-28
  • 網(wǎng)絡出版日期:  2023-05-09
  • 刊出日期:  2023-12-26

目錄

    /

    返回文章
    返回