一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

車載資源約束下的控制器域網(wǎng)絡(luò)異常檢測自適應(yīng)優(yōu)化方法

張金鋒 張震 劉少勛 鄔江興

張金鋒, 張震, 劉少勛, 鄔江興. 車載資源約束下的控制器域網(wǎng)絡(luò)異常檢測自適應(yīng)優(yōu)化方法[J]. 電子與信息學(xué)報(bào), 2023, 45(7): 2432-2442. doi: 10.11999/JEIT220692
引用本文: 張金鋒, 張震, 劉少勛, 鄔江興. 車載資源約束下的控制器域網(wǎng)絡(luò)異常檢測自適應(yīng)優(yōu)化方法[J]. 電子與信息學(xué)報(bào), 2023, 45(7): 2432-2442. doi: 10.11999/JEIT220692
ZHANG Jinfeng, ZHANG Zhen, LIU Shaoxun, WU Jiangxing. Adaptive Optimization Method for Controller Area Network Anomaly Detection under Vehicle Resource Constraints[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2432-2442. doi: 10.11999/JEIT220692
Citation: ZHANG Jinfeng, ZHANG Zhen, LIU Shaoxun, WU Jiangxing. Adaptive Optimization Method for Controller Area Network Anomaly Detection under Vehicle Resource Constraints[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2432-2442. doi: 10.11999/JEIT220692

車載資源約束下的控制器域網(wǎng)絡(luò)異常檢測自適應(yīng)優(yōu)化方法

doi: 10.11999/JEIT220692 cstr: 32379.14.JEIT220692
基金項(xiàng)目: 河南省重大科技專項(xiàng)(221100240100),鄭州市重大科技創(chuàng)新專項(xiàng)(2021KJZX0060-3)
詳細(xì)信息
    作者簡介:

    張金鋒:男,高級工程師,研究方向?yàn)橹悄芫W(wǎng)聯(lián)汽車廣義功能安全、AI安全

    張震:男,副教授,研究方向?yàn)橹悄芫W(wǎng)聯(lián)汽車廣義功能安全、網(wǎng)絡(luò)測量與管理

    劉少勛:男,高級工程師,研究方向?yàn)橹悄芫W(wǎng)聯(lián)汽車廣義功能安全、工業(yè)互聯(lián)網(wǎng)擬態(tài)安全

    鄔江興:男,教授,研究方向?yàn)閮?nèi)生安全、多模態(tài)網(wǎng)絡(luò)等

    通訊作者:

    張金鋒 zhangjinfeng@pmlabs.com.cn

  • 中圖分類號: TN919.5

Adaptive Optimization Method for Controller Area Network Anomaly Detection under Vehicle Resource Constraints

Funds: The Major Science and Technology Project of Henan Province (221100240100), The Major Science and Technology Innovation Special Project of Zhengzhou (2021KJZX0060-3)
  • 摘要: 針對在有限的車載資源約束條件下,如何兼顧控制器域網(wǎng)絡(luò)(CAN)異常檢測準(zhǔn)確度和時效性的問題,該文提出一種CAN網(wǎng)絡(luò)異常檢測自適應(yīng)優(yōu)化方法。首先,基于信息熵建立了CAN網(wǎng)絡(luò)異常檢測的準(zhǔn)確度和時效性量化指標(biāo),并將CAN網(wǎng)絡(luò)異常檢測建模為多目標(biāo)優(yōu)化問題;然后,設(shè)計(jì)了求解多目標(biāo)優(yōu)化問題的第二代非支配排序遺傳算法(NSGA-II),將帕累托前沿作為CAN網(wǎng)絡(luò)異常檢測模型參數(shù)的優(yōu)化調(diào)整空間,提出了滿足不同場景需求的檢測模型魯棒控制機(jī)制。通過實(shí)驗(yàn)分析,深入剖析了優(yōu)化參數(shù)對異常檢測的影響,驗(yàn)證了所提方法能夠在有限車載資源下適應(yīng)多樣化檢測場景需求。
  • 圖  1  CAN網(wǎng)絡(luò)數(shù)據(jù)結(jié)構(gòu)

    圖  2  部分攻擊CAN報(bào)文逃避檢測的情況

    圖  3  適應(yīng)多樣化場景的CAN網(wǎng)絡(luò)異常檢測優(yōu)化方法總體思路

    圖  4  基于NSGA-II的CAN網(wǎng)絡(luò)異常檢測優(yōu)化算法流程

    圖  5  適應(yīng)多樣化檢測場景的魯棒控制機(jī)制總體流程

    圖  6  不同采樣窗口大小條件下的CAN報(bào)文信息熵變化趨勢

    圖  7  不同采樣窗口大小條件下的入侵檢測準(zhǔn)確度變化情況

    圖  8  不同滑動尺度下的CAN報(bào)文信息熵變化情況

    圖  9  不同滑動尺度下的入侵檢測準(zhǔn)確度變化情況

    圖  10  不同滑動尺度下的入侵檢測時效性變化情況

    圖  11  不同靈敏度下的入侵檢測準(zhǔn)確度變化趨勢

    圖  12  多目標(biāo)優(yōu)化方法實(shí)驗(yàn)案例計(jì)算結(jié)果

    圖  13  本文方法在不同檢測場景下的適用性分析

    圖  14  報(bào)文數(shù)量遞增策略下的檢測準(zhǔn)確度比較分析

    圖  15  注入頻次遞減策略下的檢測準(zhǔn)確度比較分析

    算法1 基于信息熵檢測CAN報(bào)文的準(zhǔn)確度算法
     輸入:CAN 報(bào)文集合$ {S_{{\text{data}}}} $
     輸出:檢測準(zhǔn)確度$P ({\bf{IDS}} )$
     (1) 從$ {S_{{\text{data}}}} $中提取CAN 報(bào)文ID集$ {S_{{\text{ID}}}} $;
     (2) 循環(huán)計(jì)算每個滑動窗口CAN報(bào)文的檢測準(zhǔn)確度:
       (a) 利用式(2)計(jì)算滑動窗口內(nèi)的CAN報(bào)文ID 信息熵$H{\text{(} }{\bf{IDS}}{\text{)} }$;
       (b)將$H{\text{(} }{\bf{IDS}}{\text{)} }$與$S{\text{(} }{\bf{IDS}}{\text{)} }$進(jìn)行比較,若$H{\text{(} }{\bf{IDS}}{\text{)} } \in S{\text{(} }{\bf{IDS}}{\text{)} }$,則
         判斷窗口內(nèi)報(bào)文正常;
       (c) 將檢測結(jié)果與實(shí)際結(jié)果比較,得到單次檢測的準(zhǔn)確度;
       (d) 并統(tǒng)計(jì)未被列入檢測窗口的正常消息比例。
     (3) 綜合每次窗口滑動檢測結(jié)果,利用式(4)計(jì)算最終準(zhǔn)確度。
    下載: 導(dǎo)出CSV

    表  1  CAN報(bào)文實(shí)驗(yàn)數(shù)據(jù)集

    數(shù)據(jù)集數(shù)量ID范圍
    Normal300000x001~0x7ff
    DoS360000x000~0x7ff
    Injection360000x000~0x7ff
    下載: 導(dǎo)出CSV

    表  2  本文所提優(yōu)化方法的帕累托前沿

    序號參數(shù)準(zhǔn)確度時效性
    窗口大小滑動尺度閾值區(qū)間靈敏度
    12742.36251.0000.1290
    25462.41460.9990.1000
    32112.38210.9940.0448
    420622.55230.9920.0096
    下載: 導(dǎo)出CSV
  • [1] 李克強(qiáng), 戴一凡, 李升波, 等. 智能網(wǎng)聯(lián)汽車(ICV)技術(shù)的發(fā)展現(xiàn)狀及趨勢[J]. 汽車安全與節(jié)能學(xué)報(bào), 2017, 8(1): 1–14. doi: 10.3969/j.issn.1674-8484.2017.01.001

    LI Keqiang, DAI Yifan, LI Shengbo, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1–14. doi: 10.3969/j.issn.1674-8484.2017.01.001
    [2] 吳武飛, 李仁發(fā), 曾剛, 等. 智能網(wǎng)聯(lián)車網(wǎng)絡(luò)安全研究綜述[J]. 通信學(xué)報(bào), 2020, 41(6): 161–174. doi: 10.11959/j.issn.1000-436x.2020130

    WU Wufei, LI Renfa, ZENG Gang, et al. Survey of the intelligent and connected vehicle cybersecurity[J]. Journal on Communications, 2020, 41(6): 161–174. doi: 10.11959/j.issn.1000-436x.2020130
    [3] 中國汽車工程學(xué)會. 智能網(wǎng)聯(lián)汽車信息安全白皮書[R]. 中國智能網(wǎng)聯(lián)汽車產(chǎn)業(yè)創(chuàng)新聯(lián)盟成立大會, 2017.

    China Society of Automotive Engineering. White paper on intelligent network automobile information security[R]. Inaugural Conference of China Intelligent Connected Vehicle Industry Innovation Alliance, 2017.
    [4] KOSCHER K, CZESKIS A, ROESNER F, et al. Experimental security analysis of a modern automobile[C]. 2010 IEEE Symposium on Security and Privacy, Oakland, USA, 2010: 447–462.
    [5] CHECKOWAY S, MCCOY D, KANTOR B, et al. Comprehensive experimental analyses of automotive attack surfaces[C]. The 20th USENIX Conference on Security, San Francisco, USA, 2011: 447–462.
    [6] WOO S, JO H J, and LEE D H. A practical wireless attack on the connected car and security protocol for in-vehicle CAN[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 993–1006. doi: 10.1109/TITS.2014.2351612
    [7] SONG H M, KIM H R, and KIM H K. Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network[C]. 2016 International Conference on Information Networking, Kota Kinabalu, Malaysia, 2016: 63–68.
    [8] YANG Yun, DUAN Zongtao, and TEHRANIPOOR M. Identify a spoofing attack on an in-vehicle CAN bus based on the deep features of an ECU fingerprint signal[J]. Smart Cities, 2020, 3(1): 17–30. doi: 10.3390/smartcities3010002
    [9] JING Ning and LIU Jiajia. An experimental study towards attacker identification in automotive networks[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6.
    [10] YANG Yuanda, XIE Guoqi, WANG Jilong, et al. Intrusion detection for in-vehicle network by using single GAN in connected vehicles[J]. Journal of Circuits, Systems and Computers, 2021, 30(1): 2150007. doi: 10.1142/S0218126621500079
    [11] LI Yang, MOUBAYED A, HAMIEH I, et al. Tree-based intelligent intrusion detection system in internet of vehicles[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6.
    [12] KANG Minju and KANG J W. A novel intrusion detection method using deep neural network for in-vehicle network security[C]. 2016 IEEE 83rd Vehicular Technology Conference, Nanjing, China, 2016: 1–5.
    [13] CASILLO M, COPPOLA S, DE SANTO M, et al. Embedded intrusion detection system for detecting attacks over CAN-BUS[C]. 2019 4th International Conference on System Reliability and Safety, Rome, Italy, 2019: 136–141.
    [14] VAN WYK F, WANG Yiyang, KHOJANDI A, et al. Real-time sensor anomaly detection and identification in automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1264–1276. doi: 10.1109/TITS.2019.2906038
    [15] BHATIA R, KUMAR V, SERAG K, et al. Evading voltage-based intrusion detection on automotive CAN[C]. 28th Annual Network and Distributed System Security Symposium (NDSS), 2021.
    [16] CHOI W, JOO K, JO H J, et al. Voltageids: Low-level communication characteristics for automotive intrusion detection system[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(8): 2114–2129. doi: 10.1109/TIFS.2018.2812149
    [17] LEE H, JEONG S H, and KIM H K. OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame[C]. 2017 15th Annual Conference on Privacy, Security and Trust (PST), Calgary, Canada, 2017: 57–66.
    [18] HALDER S, CONTI M, and DAS S K. COIDS: A clock offset based intrusion detection system for controller area networks[C]. The 21st International Conference on Distributed Computing and Networking, Kolkata, India, 2020: 22.
    [19] CHO K T and SHIN K G. Fingerprinting electronic control units for vehicle intrusion detection[C]. The 25th USENIX Conference on Security Symposium, Austin, USA, 2016: 911–927.
    [20] MÜTER M and ASAJ N. Entropy-based anomaly detection for in-vehicle networks[C]. 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 2011: 1110–1115.
    [21] VIRMANI D, TANEJA S, CHAWLA T, et al. Entropy deviation method for analyzing network intrusion[C]. 2016 International Conference on Computing, Communication and Automation, Greater Noida, India, 2016: 515–519.
    [22] ZHAO Yuntao, ZHANG Wenbo, FENG Yongxin, et al. A classification detection algorithm based on joint entropy vector against application-layer DDoS attack[J]. Security and Communication Networks, 2018, 2018: 9463653. doi: 10.1155/2018/9463653
    [23] WANG Qian, LU Zhaojun, and QU Gang. An entropy analysis based intrusion detection system for controller area network in vehicles[C]. 2018 31st IEEE International System-on-Chip Conference (SOCC), Arlington, USA, 2018: 90–95.
    [24] 于赫, 秦貴和, 孫銘會, 等. 車載CAN總線網(wǎng)絡(luò)安全問題及異常檢測方法[J]. 吉林大學(xué)學(xué)報(bào):工學(xué)版, 2016, 46(4): 1246–1253. doi: 10.13229/j.cnki.jdxbgxb201604034

    YU He, QIN Guihe, SUN Minghui, et al. Cyber security and anomaly detection method for in-vehicle CAN[J]. Journal of Jilin University:Engineering and Technology Edition, 2016, 46(4): 1246–1253. doi: 10.13229/j.cnki.jdxbgxb201604034
    [25] 董書琴, 張斌. 基于深度特征學(xué)習(xí)的網(wǎng)絡(luò)流量異常檢測方法[J]. 電子與信息學(xué)報(bào), 2020, 42(3): 695–703. doi: 10.11999/JEIT190266

    DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266
    [26] MARCHETTI M, STABILI D, GUIDO A, et al. Evaluation of anomaly detection for in-vehicle networks through information-theoretic algorithms[C]. 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Bologna, Italy, 2016: 1–6.
  • 加載中
圖(15) / 表(3)
計(jì)量
  • 文章訪問數(shù):  535
  • HTML全文瀏覽量:  322
  • PDF下載量:  117
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-09-09
  • 網(wǎng)絡(luò)出版日期:  2022-09-15
  • 刊出日期:  2023-07-10

目錄

    /

    返回文章
    返回