一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于改進蓋爾-沙普利算法的自動識別系統(tǒng)與雙頻地波雷達斷裂航跡關聯(lián)

張暉 曾顯普 高亮

張暉, 曾顯普, 高亮. 基于改進蓋爾-沙普利算法的自動識別系統(tǒng)與雙頻地波雷達斷裂航跡關聯(lián)[J]. 電子與信息學報, 2023, 45(3): 1015-1022. doi: 10.11999/JEIT220005
引用本文: 張暉, 曾顯普, 高亮. 基于改進蓋爾-沙普利算法的自動識別系統(tǒng)與雙頻地波雷達斷裂航跡關聯(lián)[J]. 電子與信息學報, 2023, 45(3): 1015-1022. doi: 10.11999/JEIT220005
ZHANG Hui, ZENG Xianpu, GAO Liang. Track Segment Association of Automatic Identification System and Dual-frequency High-Frequency Surface Wave Radar Based on Improved Gale-Shapley Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1015-1022. doi: 10.11999/JEIT220005
Citation: ZHANG Hui, ZENG Xianpu, GAO Liang. Track Segment Association of Automatic Identification System and Dual-frequency High-Frequency Surface Wave Radar Based on Improved Gale-Shapley Algorithm[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1015-1022. doi: 10.11999/JEIT220005

基于改進蓋爾-沙普利算法的自動識別系統(tǒng)與雙頻地波雷達斷裂航跡關聯(lián)

doi: 10.11999/JEIT220005 cstr: 32379.14.JEIT220005
基金項目: 國家重點研發(fā)計劃(2017YFC1405200),國家自然科學基金(61701263)
詳細信息
    作者簡介:

    張暉:男,副教授,研究方向為智能信息處理、多傳感數(shù)據(jù)融合等

    曾顯普:男,碩士生,研究方向為高頻地波雷達多目標跟蹤與航跡關聯(lián)

    高亮:男,碩士生,研究方向為高頻地波雷達信號處理與仿真

    通訊作者:

    張暉 Hui.zhang@imu.edu.cn

  • 中圖分類號: TN958

Track Segment Association of Automatic Identification System and Dual-frequency High-Frequency Surface Wave Radar Based on Improved Gale-Shapley Algorithm

Funds: The National Key Research and Development Program of China (2017YFC1405200), The National Natural Science Foundation of China (61701263)
  • 摘要: 高頻地波雷達(HFSWR)可以實現(xiàn)大范圍海上船只目標的連續(xù)探測,但是海雜波等干擾因素的影響容易造成跟蹤航跡的斷裂。目前關于地波雷達航跡關聯(lián)的研究中,通常忽略了航跡斷裂的情況,將航跡關聯(lián)視為二分圖匹配問題,這會導致可能將單一目標的斷裂航跡判斷為多個目標,從而引起目標的誤關聯(lián)。針對上述情況,該文結合模糊綜合評判和迭代搜索算法,首次將蓋爾-沙普利(GS)算法引入航跡關聯(lián)領域,并且對其進行改進以滿足航跡斷裂時的多對多航跡關聯(lián)情況,提出了改進的蓋爾-沙普利(IGS)算法。在該算法中,通過計算航跡之間的模糊綜合評判值來得到航跡之間的傾向度序列,再由迭代搜索對航跡進行聚類以獲得航跡集群,最后將航跡集群及傾向度序列輸入蓋爾-沙普利算法來進行數(shù)輪博弈以給出關聯(lián)結果。利用雙頻率高頻地波雷達和船只自動識別系統(tǒng)(AIS)的仿真數(shù)據(jù)與實測數(shù)據(jù)進行實驗測試,實驗結果表明:所提出的算法解決了在航跡斷裂情況下的多傳感器航跡關聯(lián)問題,且在密集區(qū)域的航跡關聯(lián)效果優(yōu)于傳統(tǒng)算法。
  • 圖  1  航跡斷裂時的關聯(lián)情況示意圖

    圖  2  時間沖突時的決策流程圖

    圖  3  AIS和HFSWR仿真數(shù)據(jù)航跡關聯(lián)結果

    圖  4  AIS和HFSWR實測數(shù)據(jù)航跡關聯(lián)結果

    圖  5  AIS和HFSWR仿真數(shù)據(jù)局部航跡關聯(lián)結果

    圖  6  AIS和HFSWR雙頻航跡關聯(lián)結果

    圖  7  非合作目標航跡關聯(lián)結果

    表  1  航跡集G1詳細情況

    航跡標號傾向度表(正序)航跡所屬時間(min)
    A1B1, B3, B203~19
    A2B3, B1, B230~43
    A3B3, B2, B123~46
    A4B1, B2, B321~49
    B1A2, A3, A4, A106~30
    B2A3, A4, A1, A212~36
    B3A3, A4, A2, A115~51
    下載: 導出CSV

    表  2  航跡集G1匹配過程

    邀約輪數(shù)該輪邀約結束時的匹配結果
    第1輪A1-B1; A2-無 A3-B3; A4-B1
    第2輪A1-無; A2-B1; A3-B3; A4-無
    第3輪A1-B2; A2-B1; A3-B3; A4-B2
    下載: 導出CSV

    表  3  航跡關聯(lián)結果性能分析

    實驗數(shù)據(jù)和所用算法關聯(lián)比例(%)關聯(lián)正確率(%)距離RMSE(km)方位RMSE(°)速度RMSE(km/h)計算耗時(s)
    仿真數(shù)據(jù)GNNDA48.2088.810.40770.27590.44015.73
    仿真數(shù)據(jù)IGS75.1897.130.38630.24060.382611.82
    實測數(shù)據(jù)GNNDA42.06未知1.99301.89350.50246.49
    實測數(shù)據(jù)IGS60.75未知1.87831.67100.343813.05
    下載: 導出CSV

    表  4  實測數(shù)據(jù)非合作目標雙頻航跡關聯(lián)個例分析(km/h)

    航跡名航跡時間k1點速度k2點速度k3點速度k4點速度k5點速度k6點速度
    F1T109:57~10:22–13.48–12.26–12.86–13.33無數(shù)值無數(shù)值
    F1T210:31~10:46無數(shù)值無數(shù)值無數(shù)值無數(shù)值–13.23–13.02
    F2T109:57~10:12–13.31–12.48無數(shù)值無數(shù)值無數(shù)值無數(shù)值
    F2T210:18~10:46無數(shù)值無數(shù)值–12.43–13.05–13.01–12.78
    下載: 導出CSV
  • [1] JI Yonggang, ZHANG Jie, MENG Junmin, et al. Point association analysis of vessel target detection with SAR, HFSWR and AIS[J]. Acta Oceanologica Sinica, 2014, 33(9): 73–81. doi: 10.1007/s13131-014-0498-2
    [2] 劉根旺, 劉永信, 紀永剛, 等. 基于模糊雙門限的高頻地波雷達與AIS目標航跡關聯(lián)方法[J]. 系統(tǒng)工程與電子技術, 2016, 38(3): 557–562. doi: 10.3969/j.issn.1001-506X.2016.03.13

    LIU Genwang, LIU Yongxin, JI Yonggang, et al. Track association for high-frequency surface wave radar and AIS based on fuzzy double threshold theory[J]. Systems Engineering and Electronics, 2016, 38(3): 557–562. doi: 10.3969/j.issn.1001-506X.2016.03.13
    [3] SUN Weifeng, HUANG Weimin, JI Yonggang, et al. A vessel azimuth and course joint re-estimation method for compact HFSWR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1041–1051. doi: 10.1109/TGRS.2019.2943065
    [4] SUN Weifeng, DAI Yongshou, JI Yonggang, et al. Vessel target tracking exploiting frequency diversity for dual-frequency HFSWR[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–4.
    [5] NIKOLIC D, STOJKOVIC N, and LEKIC N. Maritime over the horizon sensor integration: High frequency surface-wave-radar and automatic identification system data integration algorithm[J]. Sensors, 2018, 18(4): 1147. doi: 10.3390/s18041147
    [6] STOJKOVIC N, NIKOLIC D, and PUZOVI? S. Density based clustering data association procedure for real–time HFSWRs tracking at OTH distances[J]. IEEE Access, 2020, 8: 39907–39919. doi: 10.1109/ACCESS.2020.2976481
    [7] WANG Jun, ZENG Yajun, WEI Shaoming, et al. Multi-sensor track-to-track association and spatial registration algorithm under incomplete measurements[J]. IEEE Transactions on Signal Processing, 2021, 69: 3337–3350. doi: 10.1109/TSP.2021.3084533
    [8] NAZARI M, PASHAZADEH S, and MOHAMMAD-KHANLI L. An adaptive density-based fuzzy clustering track association for distributed tracking system[J]. IEEE Access, 2019, 7: 135972–135981. doi: 10.1109/ACCESS.2019.2941184
    [9] 靳冰洋, 劉崢, 秦基凱. 基于灰色關聯(lián)度的兩級實時航跡關聯(lián)算法[J]. 兵工學報, 2020, 41(7): 1330–1338. doi: 10.3969/j.issn.1000-1093.2020.07.010

    JIN Bingyang, LIU Zheng, and QIN Jikai. Two-stage real-time track correlation algorithm based on gray correlation[J]. Acta Armamentarii, 2020, 41(7): 1330–1338. doi: 10.3969/j.issn.1000-1093.2020.07.010
    [10] 蔡昌愷, 朱浩, 余仁偉, 等. 基于航跡全局和局部混合特征的航跡關聯(lián)算法[J]. 儀器儀表學報, 2020, 41(10): 32–42. doi: 10.19650/j.cnki.cjsi.J2006793

    CAI Changkai, ZHU Hao, YU Renwei, et al. Track-to-track association by the global and local mixture feature[J]. Chinese Journal of Scientific Instrument, 2020, 41(10): 32–42. doi: 10.19650/j.cnki.cjsi.J2006793
    [11] RAGHU J, SRIHARI P, THARMARASA R, et al. Comprehensive track segment association for improved track continuity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2463–2480. doi: 10.1109/TAES.2018.2820364
    [12] 周學平, 李佳杰, 趙曉蓮, 等. 基于匈牙利法的機載雷達中斷航跡關聯(lián)[J]. 現(xiàn)代雷達, 2021, 43(6): 42–48. doi: 10.16592/j.cnki.1004-7859.2021.06.008

    ZHOU Xueping, LI Jiajie, ZHAO Xiaolian, et al. Airborne radar track segment association based on hungarian algorithm[J]. Modern Radar, 2021, 43(6): 42–48. doi: 10.16592/j.cnki.1004-7859.2021.06.008
    [13] CHANG W, JAU Y T, SU S L, et al. Gale-Shapley-algorithm based resource allocation scheme for device-to-device communications underlaying downlink cellular networks[C]. 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1–6.
    [14] PITTEL B. One-sided version of Gale-Shapley proposal algorithm and its likely behavior under random preferences[J]. Discrete Applied Mathematics, 2021, 292: 1–18. doi: 10.1016/j.dam.2020.12.020
  • 加載中
圖(7) / 表(4)
計量
  • 文章訪問數(shù):  622
  • HTML全文瀏覽量:  277
  • PDF下載量:  74
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2022-01-05
  • 修回日期:  2022-08-31
  • 網(wǎng)絡出版日期:  2022-09-02
  • 刊出日期:  2023-03-10

目錄

    /

    返回文章
    返回