一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

面向6G的無人機(jī)通信綜述

陳新穎 盛敏 李博 趙楠

陳新穎, 盛敏, 李博, 趙楠. 面向6G的無人機(jī)通信綜述[J]. 電子與信息學(xué)報, 2022, 44(3): 781-789. doi: 10.11999/JEIT210789
引用本文: 陳新穎, 盛敏, 李博, 趙楠. 面向6G的無人機(jī)通信綜述[J]. 電子與信息學(xué)報, 2022, 44(3): 781-789. doi: 10.11999/JEIT210789
CHEN Xinying, SHENG Min, LI Bo, ZHAO Nan. Survey on Unmanned Aerial Vehicle Communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781-789. doi: 10.11999/JEIT210789
Citation: CHEN Xinying, SHENG Min, LI Bo, ZHAO Nan. Survey on Unmanned Aerial Vehicle Communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781-789. doi: 10.11999/JEIT210789

面向6G的無人機(jī)通信綜述

doi: 10.11999/JEIT210789 cstr: 32379.14.JEIT210789
基金項(xiàng)目: 國家重點(diǎn)研發(fā)計劃 (2020YFB1807002)
詳細(xì)信息
    作者簡介:

    陳新穎:女,1992年生,博士生,研究方向?yàn)闊o人機(jī)通信、隱蔽通信、物理層安全

    盛敏:女,1975年生,教授,博士生導(dǎo)師,研究方向?yàn)橐苿油ㄐ畔到y(tǒng)、移動自組織網(wǎng)、異構(gòu)網(wǎng)絡(luò)融合、空間信息網(wǎng)絡(luò)

    李博:男,1983年生,副教授,博士生導(dǎo)師,研究方向?yàn)闊o線通信、空天地網(wǎng)絡(luò)、海洋信息傳感網(wǎng)、飛行自組織網(wǎng)絡(luò)

    趙楠:男,1982年生,教授,博士生導(dǎo)師,研究方向?yàn)闊o人機(jī)通信、非正交多址接入、干擾管理、綠色通信

    通訊作者:

    趙楠 zhaonan@dlut.edu.cn

  • 中圖分類號: TN915.0

Survey on Unmanned Aerial Vehicle Communications for 6G

Funds: The National Key R&D Program of China (2020YFB1807002)
  • 摘要: 5G的成功商用為日常生活帶來了實(shí)質(zhì)性的變化,如自動駕駛、萬物互聯(lián)等,然而隨之也產(chǎn)生了更大的數(shù)據(jù)量需求,進(jìn)而催生了第6代移動通信。相較于5G,6G在帶寬、時延、覆蓋等性能方面均需要有更大的提升。因此,該文針對全域覆蓋、場景智聯(lián)、信息耦合的6G網(wǎng)絡(luò)中無人機(jī)(UAVs)的應(yīng)用場景進(jìn)行了綜述。首先,針對無人機(jī)在空天地海一體化網(wǎng)絡(luò)架構(gòu)中的應(yīng)用進(jìn)行了陳述,重點(diǎn)討論了無人機(jī)在不同場景中可能承擔(dān)的角色及功能,如蜂群基站、全息投影部署、遠(yuǎn)距離中繼通信以及數(shù)據(jù)采集等。然后,對6G中應(yīng)用于無人機(jī)通信的太赫茲、超大規(guī)模天線、內(nèi)生人工智能、智能反射面(IRS)、智能邊緣計算、區(qū)塊鏈、通信感知一體化等潛在關(guān)鍵技術(shù)進(jìn)行了探討。最后,對6G場景下無人機(jī)通信面臨的續(xù)航時間、網(wǎng)絡(luò)融合性、智能反射面兼容性、太赫茲通信研發(fā)以及用戶安全等方面的技術(shù)挑戰(zhàn)進(jìn)行了展望。
  • 圖  1  空天地海一體化網(wǎng)絡(luò)架構(gòu)

    圖  2  無人機(jī)在6G移動通信中的主要應(yīng)用

    圖  3  6G無人機(jī)通信網(wǎng)絡(luò)中的內(nèi)生智能

    圖  4  智能反射面在6G無人機(jī)通信中的應(yīng)用

    圖  5  6G無人機(jī)通信中的智能邊緣計算

    表  1  6G移動網(wǎng)絡(luò)各種場景中無人機(jī)通信的關(guān)鍵技術(shù)及功能

    參考文獻(xiàn)關(guān)鍵技術(shù)無人機(jī)功能無人機(jī)數(shù)目(個)
    文獻(xiàn)[21]空天地海一體化通信通信基站1
    文獻(xiàn)[22]動態(tài)頻譜共享采集傳感器信息并發(fā)送至基站
    文獻(xiàn)[23]有限長信道編碼采集傳感器信息并發(fā)送至基站
    文獻(xiàn)[24]超大陣列天線與地面用戶或基站通信1
    文獻(xiàn)[25]太赫茲收發(fā)信息的用戶4
    文獻(xiàn)[26]人工智能接收信息進(jìn)行自學(xué)習(xí)的用戶
    文獻(xiàn)[27]區(qū)塊鏈、人工智能運(yùn)送藥品的用戶1
    下載: 導(dǎo)出CSV
  • [1] 尤肖虎, 潘志文, 高西奇, 等. 5G移動通信發(fā)展趨勢與若干關(guān)鍵技術(shù)[J]. 中國科學(xué):信息科學(xué), 2014, 44(5): 551–563. doi: 10.1360/N112014-00032

    YOU Xiaohu, PAN Zhiwen, GAO Xiqi, et al. The 5G mobile communication: The development trends and its emerging key techniques[J]. Scientia Sinica Informationis, 2014, 44(5): 551–563. doi: 10.1360/N112014-00032
    [2] LYU Feng, CHENG Nan, ZHU Hongzi, et al. Intelligent context-aware communication paradigm design for IoVs based on data analytics[J]. IEEE Network, 2018, 32(6): 74–82. doi: 10.1109/MNET.2018.1800067
    [3] GUAN Yueshi, WANG Yijie, BIAN Qing, et al. High-efficiency self-driven circuit with parallel branch for high frequency converters[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 926–931. doi: 10.1109/TPEL.2017.2724545
    [4] Cisco System. Cosic visual networking index: Global mobile data traffic forecast update, 2017–2022 white paper[S]. 2019.
    [5] 賽迪智庫無線管理研究所. 6G概念及愿景白皮書[N]. 中國計算機(jī)報, 2020-05-11(008). doi: 10.28468/n.cnki.njsjb.2020.000054.
    [6] 張平, 牛凱, 田輝, 等. 6G移動通信技術(shù)展望[J]. 通信學(xué)報, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022

    ZHANG Ping, NIU Kai, TIAN Hui, et al. Technology prospect of 6G mobile communications[J]. Journal on Communications, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022
    [7] 謝莎, 李浩然, 李玲香, 等. 面向6G網(wǎng)絡(luò)的太赫茲通信技術(shù)研究綜述[J]. 移動通信, 2020, 44(6): 36–43. doi: 10.3969/j.issn.1006-1010.2020.06.006

    XIE Sha, LI Haoran, LI Lingxiang, et al. A survey of terahertz communication technologies for 6G networks[J]. Mobile Communications, 2020, 44(6): 36–43. doi: 10.3969/j.issn.1006-1010.2020.06.006
    [8] CHEN Shuaifei, ZHANG Jiayi, JIN Yu, et al. Wireless powered IoE for 6G: Massive access meets scalable cell-free massive MIMO[J]. China Communications, 2020, 17(12): 92–109. doi: 10.23919/JCC.2020.12.007
    [9] LONG Wenxuan, CHEN Rui, MARCO M, et al. A promising technology for 6G wireless networks: Intelligent refl ecting surface[J]. Journal of Communications and Information Networks, 2021, 6(1): 1–16. doi: 10.23919/JCIN.2021.9387701
    [10] LETAIEF K B, CHEN Wei, SHI Yuanming, et al. The roadmap to 6G: AI empowered wireless networks[J]. IEEE Communications Magazine, 2019, 57(8): 84–90. doi: 10.1109/MCOM.2019.1900271
    [11] ZHAO Nan, LU Weidang, SHENG Min, et al. UAV-assisted emergency networks in disasters[J]. IEEE Wireless Communications, 2019, 26(1): 45–51. doi: 10.1109/MWC.2018.1800160
    [12] CHEN Xinying, LI Dongdong, YANG Zhutian, et al. Securing aerial-ground transmission for NOMA-UAV networks[J]. IEEE Network, 2020, 34(6): 171–177. doi: 10.1109/MNET.011.2000101
    [13] WANG Jun, NA Zhenyu, and LIU Xin. Collaborative design of multi-UAV trajectory and resource scheduling for 6G-enabled internet of things[J]. IEEE Internet of Things Journal, 2021, 8(20): 15096–15106. doi: 10.1109/JIOT.2020.3031622
    [14] 劉超, 陸璐, 王碩, 等. 面向空天地一體多接入的融合6G網(wǎng)絡(luò)架構(gòu)展望[J]. 移動通信, 2020, 44(6): 116–120. doi: 10.3969/j.issn.1006-1010.2020.06.017

    LIU Chao, LU Lu, WANG Shuo, et al. Prospects for a multi-access air-space-terrestrial integrated 6G network architecture[J]. Mobile Communications, 2020, 44(6): 116–120. doi: 10.3969/j.issn.1006-1010.2020.06.017
    [15] KHUWAJA A A, CHEN Yunfei, ZHAO Nan, et al. A survey of channel modeling for UAV communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2804–2821. doi: 10.1109/COMST.2018.2856587
    [16] DUO Bin, WU Qingqing, YUAN Xiaojun, et al. Anti-jamming 3D trajectory design for UAV-enabled wireless sensor networks under probabilistic LoS channel[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16288–16293. doi: 10.1109/TVT.2020.3040334
    [17] COSTANTINO D, ANGELINI M G, and VOZZA G. The engineering and assembly of a low cost UAV[C]. Proceedings of 2015 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 2015: 351–355. doi: 10.1109/MetroAeroSpace.2015.7180681.
    [18] DAI Cuiqin, ZHANG Mingjian, LI Chong, et al. QoE-aware intelligent satellite constellation design in satellite internet of things[J]. IEEE Internet of Things Journal, 2021, 8(6): 4855–4867. doi: 10.1109/JIOT.2020.3030263
    [19] ZHU Xiangming, JIANG Chunxiao, KUANG Linling, et al. Cooperative transmission in integrated terrestrial-satellite networks[J]. IEEE Network, 2019, 33(3): 204–210. doi: 10.1109/MNET.2018.1800164
    [20] SHAFIQUE T, TABASSUM H, and HOSSAIN E. Optimization of wireless relaying with flexible UAV-borne reflecting surfaces[J]. IEEE Transactions on Communications, 2021, 69(1): 309–325. doi: 10.1109/TCOMM.2020.3032700
    [21] NA Zhenyu, LIU Yue, SHI Jingcheng, et al. UAV-supported clustered NOMA for 6G-enabled internet of things: Trajectory planning and resource allocation[J]. IEEE Internet of Things, 2021, 8(20): 15041–15048. doi: 10.1109/JIOT.2020.3004432
    [22] ZHANG Shuhang, ZHANG Hongliang, and SONG Lingyang. Beyond D2D: Full dimension UAV-to-everything communications in 6G[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6592–6602. doi: 10.1109/TVT.2020.2984624
    [23] ZHANG Xi, WANG Jingqing, and POOR H V. Vincent. AoI-driven statistical delay and error-rate bounded QoS provisioning for mURLLC Over UAV-multimedia 6G mobile networks using FBC[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3425–3433. doi: 10.1109/JSAC.2021.3088625
    [24] CHANG Hengtai, WANG Chengxiang, LIU Yu, et al. A novel nonstationary 6G UAV-to-ground wireless channel model with 3-D arbitrary trajectory changes[J]. IEEE Internet of Things Journal, 2020, 8(12): 9865–9877. doi: 10.1109/JIOT.2020.3018479
    [25] SAEED A, GURBUZ O, BICEN A O, et al. Variable-bandwidth model and capacity analysis for aerial communications in the terahertz band[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1768–1784. doi: 10.1109/JSAC.2021.3071831
    [26] CHENG Hai, BERTIZZOLO L, D’ORO S, et al. Learning to fly: A distributed deep reinforcement learning framework for software-defined UAV network control[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1486–1504. doi: 10.1109/OJCOMS.2021.3092690
    [27] GUPTA R, SHUKLA A, and TANWAR S. BATS: A blockchain and ai-empowered drone-assisted telesurgery system towards 6G[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(4): 2958–2967. doi: 10.1109/TNSE.2020.3043262.
    [28] JIANG Xu, CHEN Xinying, TANG Jie, et al. Covert communication in UAV-assisted air-ground networks[J]. IEEE Wireless Communications, 2021, 28(4): 190–197. doi: 10.1109/MWC.001.2000454
    [29] CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2): 1–35. doi: 10.12676/j.cc.2019.02.001
    [30] ZHANG Senjie, JIN Shi, WEN Chaokai, et al. Improving expectation propagation with lattice reduction for massive MIMO detection[J]. China Communications, 2018, 15(12): 49–54. doi: 10.12676/j.cc.2018.12.003
    [31] AKYILDIZ I F and JORNET J M. Realizing ultra-massive MIMO (1024×1024) communication in the (0.06–10) terahertz band[J]. Nano Communication Networks, 2016, 8: 46–54. doi: 10.1016/j.nancom.2016.02.001
    [32] ZHANG Chuan, UENG Y L, STUDER C, et al. Artificial intelligence for 5G and beyond 5G: Implementations, algorithms, and optimizations[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(2): 149–163. doi: 10.1109/JETCAS.2020.3000103
    [33] WANG Hong, LIU Chen, SHI Zheng, et al. On power minimization for IRS-aided downlink NOMA systems[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1808–1811. doi: 10.1109/LWC.2020.2999097
    [34] XIE Ziwen, LIU Junyu, SHENG Min, et al. Exploiting aerial computing for air-to-ground coverage enhancement[J]. IEEE Wireless Communications.
    [35] JIANG Xu, SHENG Min, ZHAO Nan, et al. Green UAV communications for 6G: A survey[J]. Chinese Journal of Aeronautics, 2021. doi: 10.1016/j.cja.2021.04.025.
  • 加載中
圖(5) / 表(1)
計量
  • 文章訪問數(shù):  8161
  • HTML全文瀏覽量:  3891
  • PDF下載量:  2009
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2021-08-06
  • 修回日期:  2021-10-22
  • 網(wǎng)絡(luò)出版日期:  2021-11-04
  • 刊出日期:  2022-03-28

目錄

    /

    返回文章
    返回