面向6G的無人機(jī)通信綜述
doi: 10.11999/JEIT210789 cstr: 32379.14.JEIT210789
-
1.
大連理工大學(xué) 信息與通信工程學(xué)院 大連 116024
-
2.
西安電子科技大學(xué) 綜合業(yè)務(wù)網(wǎng)理論及關(guān)鍵技術(shù)國家重點(diǎn)實(shí)驗(yàn)室 西安 710071
-
3.
哈爾濱工業(yè)大學(xué)(威海) 信息科學(xué)與工程學(xué)院 威海 264209
Survey on Unmanned Aerial Vehicle Communications for 6G
-
1.
School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
-
2.
State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
-
3.
School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China
-
摘要: 5G的成功商用為日常生活帶來了實(shí)質(zhì)性的變化,如自動駕駛、萬物互聯(lián)等,然而隨之也產(chǎn)生了更大的數(shù)據(jù)量需求,進(jìn)而催生了第6代移動通信。相較于5G,6G在帶寬、時延、覆蓋等性能方面均需要有更大的提升。因此,該文針對全域覆蓋、場景智聯(lián)、信息耦合的6G網(wǎng)絡(luò)中無人機(jī)(UAVs)的應(yīng)用場景進(jìn)行了綜述。首先,針對無人機(jī)在空天地海一體化網(wǎng)絡(luò)架構(gòu)中的應(yīng)用進(jìn)行了陳述,重點(diǎn)討論了無人機(jī)在不同場景中可能承擔(dān)的角色及功能,如蜂群基站、全息投影部署、遠(yuǎn)距離中繼通信以及數(shù)據(jù)采集等。然后,對6G中應(yīng)用于無人機(jī)通信的太赫茲、超大規(guī)模天線、內(nèi)生人工智能、智能反射面(IRS)、智能邊緣計算、區(qū)塊鏈、通信感知一體化等潛在關(guān)鍵技術(shù)進(jìn)行了探討。最后,對6G場景下無人機(jī)通信面臨的續(xù)航時間、網(wǎng)絡(luò)融合性、智能反射面兼容性、太赫茲通信研發(fā)以及用戶安全等方面的技術(shù)挑戰(zhàn)進(jìn)行了展望。Abstract: Although the application of the fifth-Generation (5G) mobile communication has brought tremendous innovations to the daily life of human beings, e.g., autonomous vehicles and internet of everything, the upcoming huger data requirement leads to the emergence of the sixth-Generation (6G) mobile communication. Compared to 5G, the transmission rate, time delay, and wireless coverage need to be improved significantly. Thus, in this paper the applications of Unmanned Aerial Vehicles (UAVs) to the ubiquitous, intelligent and coupling 6G network are surveyed. First, the utilization of UAVs in the framework of space-air-ground-sea integrated network is demonstrated, and the roles and functions of UAVs in different scenarios are emphasized, e.g., the swarm base stations, the deployment for holographic projection, the long-distance relaying and the data collection. Then, the potential 6G key techniques of terahertz, ultra-massive multiple-input and multiple-output, endogenous artificial intelligence, Intelligent Reflecting Surface (IRS), intelligent edge computing, blockchain and integrated sensing and communication for UAV communications are investigated. Finally, the future challenges of UAV communications for 6G, including the limited duration, integration of networks, compatibility of IRS, development of THz communications, and user security are discussed.
-
[1] 尤肖虎, 潘志文, 高西奇, 等. 5G移動通信發(fā)展趨勢與若干關(guān)鍵技術(shù)[J]. 中國科學(xué):信息科學(xué), 2014, 44(5): 551–563. doi: 10.1360/N112014-00032YOU Xiaohu, PAN Zhiwen, GAO Xiqi, et al. The 5G mobile communication: The development trends and its emerging key techniques[J]. Scientia Sinica Informationis, 2014, 44(5): 551–563. doi: 10.1360/N112014-00032 [2] LYU Feng, CHENG Nan, ZHU Hongzi, et al. Intelligent context-aware communication paradigm design for IoVs based on data analytics[J]. IEEE Network, 2018, 32(6): 74–82. doi: 10.1109/MNET.2018.1800067 [3] GUAN Yueshi, WANG Yijie, BIAN Qing, et al. High-efficiency self-driven circuit with parallel branch for high frequency converters[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 926–931. doi: 10.1109/TPEL.2017.2724545 [4] Cisco System. Cosic visual networking index: Global mobile data traffic forecast update, 2017–2022 white paper[S]. 2019. [5] 賽迪智庫無線管理研究所. 6G概念及愿景白皮書[N]. 中國計算機(jī)報, 2020-05-11(008). doi: 10.28468/n.cnki.njsjb.2020.000054. [6] 張平, 牛凱, 田輝, 等. 6G移動通信技術(shù)展望[J]. 通信學(xué)報, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022ZHANG Ping, NIU Kai, TIAN Hui, et al. Technology prospect of 6G mobile communications[J]. Journal on Communications, 2019, 40(1): 141–148. doi: 10.11959/j.issn.1000-436x.2019022 [7] 謝莎, 李浩然, 李玲香, 等. 面向6G網(wǎng)絡(luò)的太赫茲通信技術(shù)研究綜述[J]. 移動通信, 2020, 44(6): 36–43. doi: 10.3969/j.issn.1006-1010.2020.06.006XIE Sha, LI Haoran, LI Lingxiang, et al. A survey of terahertz communication technologies for 6G networks[J]. Mobile Communications, 2020, 44(6): 36–43. doi: 10.3969/j.issn.1006-1010.2020.06.006 [8] CHEN Shuaifei, ZHANG Jiayi, JIN Yu, et al. Wireless powered IoE for 6G: Massive access meets scalable cell-free massive MIMO[J]. China Communications, 2020, 17(12): 92–109. doi: 10.23919/JCC.2020.12.007 [9] LONG Wenxuan, CHEN Rui, MARCO M, et al. A promising technology for 6G wireless networks: Intelligent refl ecting surface[J]. Journal of Communications and Information Networks, 2021, 6(1): 1–16. doi: 10.23919/JCIN.2021.9387701 [10] LETAIEF K B, CHEN Wei, SHI Yuanming, et al. The roadmap to 6G: AI empowered wireless networks[J]. IEEE Communications Magazine, 2019, 57(8): 84–90. doi: 10.1109/MCOM.2019.1900271 [11] ZHAO Nan, LU Weidang, SHENG Min, et al. UAV-assisted emergency networks in disasters[J]. IEEE Wireless Communications, 2019, 26(1): 45–51. doi: 10.1109/MWC.2018.1800160 [12] CHEN Xinying, LI Dongdong, YANG Zhutian, et al. Securing aerial-ground transmission for NOMA-UAV networks[J]. IEEE Network, 2020, 34(6): 171–177. doi: 10.1109/MNET.011.2000101 [13] WANG Jun, NA Zhenyu, and LIU Xin. Collaborative design of multi-UAV trajectory and resource scheduling for 6G-enabled internet of things[J]. IEEE Internet of Things Journal, 2021, 8(20): 15096–15106. doi: 10.1109/JIOT.2020.3031622 [14] 劉超, 陸璐, 王碩, 等. 面向空天地一體多接入的融合6G網(wǎng)絡(luò)架構(gòu)展望[J]. 移動通信, 2020, 44(6): 116–120. doi: 10.3969/j.issn.1006-1010.2020.06.017LIU Chao, LU Lu, WANG Shuo, et al. Prospects for a multi-access air-space-terrestrial integrated 6G network architecture[J]. Mobile Communications, 2020, 44(6): 116–120. doi: 10.3969/j.issn.1006-1010.2020.06.017 [15] KHUWAJA A A, CHEN Yunfei, ZHAO Nan, et al. A survey of channel modeling for UAV communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2804–2821. doi: 10.1109/COMST.2018.2856587 [16] DUO Bin, WU Qingqing, YUAN Xiaojun, et al. Anti-jamming 3D trajectory design for UAV-enabled wireless sensor networks under probabilistic LoS channel[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16288–16293. doi: 10.1109/TVT.2020.3040334 [17] COSTANTINO D, ANGELINI M G, and VOZZA G. The engineering and assembly of a low cost UAV[C]. Proceedings of 2015 IEEE Metrology for Aerospace (MetroAeroSpace), Benevento, Italy, 2015: 351–355. doi: 10.1109/MetroAeroSpace.2015.7180681. [18] DAI Cuiqin, ZHANG Mingjian, LI Chong, et al. QoE-aware intelligent satellite constellation design in satellite internet of things[J]. IEEE Internet of Things Journal, 2021, 8(6): 4855–4867. doi: 10.1109/JIOT.2020.3030263 [19] ZHU Xiangming, JIANG Chunxiao, KUANG Linling, et al. Cooperative transmission in integrated terrestrial-satellite networks[J]. IEEE Network, 2019, 33(3): 204–210. doi: 10.1109/MNET.2018.1800164 [20] SHAFIQUE T, TABASSUM H, and HOSSAIN E. Optimization of wireless relaying with flexible UAV-borne reflecting surfaces[J]. IEEE Transactions on Communications, 2021, 69(1): 309–325. doi: 10.1109/TCOMM.2020.3032700 [21] NA Zhenyu, LIU Yue, SHI Jingcheng, et al. UAV-supported clustered NOMA for 6G-enabled internet of things: Trajectory planning and resource allocation[J]. IEEE Internet of Things, 2021, 8(20): 15041–15048. doi: 10.1109/JIOT.2020.3004432 [22] ZHANG Shuhang, ZHANG Hongliang, and SONG Lingyang. Beyond D2D: Full dimension UAV-to-everything communications in 6G[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6592–6602. doi: 10.1109/TVT.2020.2984624 [23] ZHANG Xi, WANG Jingqing, and POOR H V. Vincent. AoI-driven statistical delay and error-rate bounded QoS provisioning for mURLLC Over UAV-multimedia 6G mobile networks using FBC[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3425–3433. doi: 10.1109/JSAC.2021.3088625 [24] CHANG Hengtai, WANG Chengxiang, LIU Yu, et al. A novel nonstationary 6G UAV-to-ground wireless channel model with 3-D arbitrary trajectory changes[J]. IEEE Internet of Things Journal, 2020, 8(12): 9865–9877. doi: 10.1109/JIOT.2020.3018479 [25] SAEED A, GURBUZ O, BICEN A O, et al. Variable-bandwidth model and capacity analysis for aerial communications in the terahertz band[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1768–1784. doi: 10.1109/JSAC.2021.3071831 [26] CHENG Hai, BERTIZZOLO L, D’ORO S, et al. Learning to fly: A distributed deep reinforcement learning framework for software-defined UAV network control[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1486–1504. doi: 10.1109/OJCOMS.2021.3092690 [27] GUPTA R, SHUKLA A, and TANWAR S. BATS: A blockchain and ai-empowered drone-assisted telesurgery system towards 6G[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(4): 2958–2967. doi: 10.1109/TNSE.2020.3043262. [28] JIANG Xu, CHEN Xinying, TANG Jie, et al. Covert communication in UAV-assisted air-ground networks[J]. IEEE Wireless Communications, 2021, 28(4): 190–197. doi: 10.1109/MWC.001.2000454 [29] CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2): 1–35. doi: 10.12676/j.cc.2019.02.001 [30] ZHANG Senjie, JIN Shi, WEN Chaokai, et al. Improving expectation propagation with lattice reduction for massive MIMO detection[J]. China Communications, 2018, 15(12): 49–54. doi: 10.12676/j.cc.2018.12.003 [31] AKYILDIZ I F and JORNET J M. Realizing ultra-massive MIMO (1024×1024) communication in the (0.06–10) terahertz band[J]. Nano Communication Networks, 2016, 8: 46–54. doi: 10.1016/j.nancom.2016.02.001 [32] ZHANG Chuan, UENG Y L, STUDER C, et al. Artificial intelligence for 5G and beyond 5G: Implementations, algorithms, and optimizations[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(2): 149–163. doi: 10.1109/JETCAS.2020.3000103 [33] WANG Hong, LIU Chen, SHI Zheng, et al. On power minimization for IRS-aided downlink NOMA systems[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1808–1811. doi: 10.1109/LWC.2020.2999097 [34] XIE Ziwen, LIU Junyu, SHENG Min, et al. Exploiting aerial computing for air-to-ground coverage enhancement[J]. IEEE Wireless Communications. [35] JIANG Xu, SHENG Min, ZHAO Nan, et al. Green UAV communications for 6G: A survey[J]. Chinese Journal of Aeronautics, 2021. doi: 10.1016/j.cja.2021.04.025. -