一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

一種基于聯(lián)邦學(xué)習(xí)資源需求預(yù)測的虛擬網(wǎng)絡(luò)功能遷移算法

唐倫 吳婷 周鑫隆 陳前斌

唐倫, 吳婷, 周鑫隆, 陳前斌. 一種基于聯(lián)邦學(xué)習(xí)資源需求預(yù)測的虛擬網(wǎng)絡(luò)功能遷移算法[J]. 電子與信息學(xué)報, 2022, 44(10): 3532-3540. doi: 10.11999/JEIT210743
引用本文: 唐倫, 吳婷, 周鑫隆, 陳前斌. 一種基于聯(lián)邦學(xué)習(xí)資源需求預(yù)測的虛擬網(wǎng)絡(luò)功能遷移算法[J]. 電子與信息學(xué)報, 2022, 44(10): 3532-3540. doi: 10.11999/JEIT210743
TANG Lun, WU Ting, ZHOU Xinlong, CHEN Qianbin. A Virtual Network Function Migration Algorithm Based on Federated Learning Prediction of Resource Requirements[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3532-3540. doi: 10.11999/JEIT210743
Citation: TANG Lun, WU Ting, ZHOU Xinlong, CHEN Qianbin. A Virtual Network Function Migration Algorithm Based on Federated Learning Prediction of Resource Requirements[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3532-3540. doi: 10.11999/JEIT210743

一種基于聯(lián)邦學(xué)習(xí)資源需求預(yù)測的虛擬網(wǎng)絡(luò)功能遷移算法

doi: 10.11999/JEIT210743 cstr: 32379.14.JEIT210743
基金項目: 國家自然科學(xué)基金(62071078),重慶市教委科學(xué)技術(shù)研究項目(KJZD-M201800601)
詳細信息
    作者簡介:

    唐倫:男,教授,博士,研究方向為下一代無線通信網(wǎng)絡(luò)、異構(gòu)蜂窩網(wǎng)絡(luò)、軟件定義無線網(wǎng)絡(luò)等

    吳婷:女,碩士生,研究方向為5G網(wǎng)絡(luò)切片、服務(wù)功能鏈部署和重配置、機器學(xué)習(xí)算法

    周鑫隆:男,碩士生,研究方向為網(wǎng)絡(luò)切片、資源分配、深度學(xué)習(xí)算法

    陳前斌:男,教授,博士生導(dǎo)師,研究方向為個人通信、多媒體信息處理與傳輸、異構(gòu)蜂窩網(wǎng)絡(luò)等

    通訊作者:

    吳婷 2721283189@qq.com

  • 中圖分類號: TN929.5

A Virtual Network Function Migration Algorithm Based on Federated Learning Prediction of Resource Requirements

Funds: The National Natural Science Foundation of China (62071078), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
  • 摘要: 針對網(wǎng)絡(luò)切片場景下時變網(wǎng)絡(luò)流量引起的虛擬網(wǎng)絡(luò)功能(VNF)遷移問題,該文提出一種基于聯(lián)邦學(xué)習(xí)的雙向門控循環(huán)單元(FedBi-GRU)資源需求預(yù)測的VNF遷移算法。該算法首先建立系統(tǒng)能耗和負(fù)載均衡的VNF遷移模型,然后提出一種基于分布式聯(lián)邦學(xué)習(xí)框架協(xié)作訓(xùn)練預(yù)測模型,并在此框架的基礎(chǔ)上設(shè)計基于在線訓(xùn)練的雙向門控循環(huán)單元(Bi-GRU)算法預(yù)測VNF的資源需求?;谫Y源預(yù)測結(jié)果,聯(lián)合系統(tǒng)能耗優(yōu)化和負(fù)載均衡,提出一種分布式近端策略優(yōu)化(DPPO)的遷移算法提前制定VNF遷移策略。仿真結(jié)果表明,兩種算法的結(jié)合有效地降低了網(wǎng)絡(luò)系統(tǒng)能耗并保證負(fù)載均衡。
  • 圖  1  網(wǎng)絡(luò)場景圖

    圖  2  FedBi-GRU與單任務(wù)Bi-GRU預(yù)測對比

    圖  3  FedBi-GRU與多任務(wù)Bi-GRU預(yù)測對比

    圖  4  不同CPU閾值的網(wǎng)絡(luò)系統(tǒng)能耗

    圖  5  不同CPU閾值的網(wǎng)絡(luò)資源方差

    圖  6  網(wǎng)絡(luò)系統(tǒng)能耗對比

    圖  7  網(wǎng)絡(luò)資源方差對比

    表  1  基于DDPO的VNF遷移算法

     輸入:VNF的資源需求預(yù)測結(jié)果$ {r_{t + 1}} = \{ r_{t + 1}^{\text{C}},r_{t + 1}^{\text{M}},r_{t + 1}^{\text{B}}\} $,物理網(wǎng)絡(luò)圖$ {G^{\text{P}}} = ({N^{\text{P}}},{L^{\text{P}}}) $,SFC網(wǎng)絡(luò)圖$ G_i^{\text{V}} = (N_i^{\text{V}},L_i^{\text{V}}) $
     輸出:VNF映射策略$ \pi $
     (1) 根據(jù)VNF的資源需求預(yù)測結(jié)果,計算各個物理節(jié)點的資源利用率${\eta _{\rm{R}}}$
     (2) if ${\eta _{\rm{R} } } \le \eta _{\rm{R} }^{\textq7j3ldu95 }\& \& {\eta _{\rm{R} } } \ge \eta _{\rm{R}}^{ {\text{up} } }$ then
     (3) 初始化全局參數(shù)$ ({\theta _{\text{c}}},{\theta _{\text{a}}}) $,局部參數(shù)$ (\theta _{\text{c}}^n,\theta _{\text{a}}^n) $,全局PPO網(wǎng)絡(luò)最大迭代次數(shù)$ {K_{{\text{max}}}} $,局部PPO網(wǎng)絡(luò)最大迭代次數(shù)$ M $,線程數(shù)$ N $,學(xué)習(xí)率
       $ ({\varepsilon _{\text{c}}},{\varepsilon _{\text{a}}}) $
     (4)  for ${\text{thread} } = 1, 2,\cdots ,N$ do
     (5)   for ${\text{episode} } = 1,2, \cdots ,M$ do
     (6)    從本地Actor網(wǎng)絡(luò)的策略$ \pi ({s_n}(t)\left| {{a_n}(t),\theta _{\text{a}}^n} \right.) $中選取映射動作$ a(t) $
     (7)    if $ {\eta _1} \in (\eta _1^{\textq7j3ldu95},\eta _1^{{\text{up}}})\& \& {\eta _2} \in (\eta _2^{\textq7j3ldu95},\eta _2^{{\text{up}}})\& \& {\eta _3} \in (\eta _3^{\textq7j3ldu95},\eta _3^{{\text{up}}})\& \& T \le {T_{{\text{tot}}}} $ then
     (8)     執(zhí)行動作$ a(t) $,根據(jù)式(16)得到瞬時獎勵$ r(t) $,并轉(zhuǎn)移到狀態(tài)$ s(t + 1) $
     (9)     從本地Actor網(wǎng)絡(luò)獲得優(yōu)勢函數(shù)$ A({s_n}(t),{a_n}(t)) $
     (10)    else
     (11)     式(16)瞬時獎勵$ r(t) = - {1 \mathord{\left/ {\vphantom {1 \varepsilon }} \right. } \varepsilon } $,從本地${\rm{Actor}}$網(wǎng)絡(luò)重新選取動作$ a(t) $
     (12)    end if
     (13)   end for
     (14)    根據(jù)式(24)更新全局PPO的Critic網(wǎng)絡(luò)累計梯度$ \Delta {\theta _{\text{c}}} $
     (15)    根據(jù)式(26)更新全局PPO的Actor網(wǎng)絡(luò)累計梯度$ \Delta {\theta _{\text{a}}} $
     (16)    將$ \Delta {\theta _{\text{c}}} $和$ \Delta {\theta _a} $推送至全局PPO網(wǎng)絡(luò)進行異步更新
     (17)    $ {\theta _{\text{c}}} \leftarrow {\theta _{\text{c}}} + {\varepsilon _{\text{c}}}\Delta {\theta _{\text{c}}} $,$ {\theta _{\text{a}}} \leftarrow {\theta _{\text{a}}} + {\varepsilon _{\text{a}}}\Delta {\theta _{\text{a}}} $
     (18)  end for
     (19)   同步全局PPO網(wǎng)絡(luò)參數(shù)至本地PPO網(wǎng)絡(luò)參數(shù):$ \theta _{\text{c}}^{n'} = {\theta _{\text{c}}} $, $ \theta {_{\text{a}}^{n'}} = \theta _{\text{a}}^{} $
     (20)   繼續(xù)執(zhí)行步驟4—步驟17
     (21)  until $ K \ge {K_{{\text{max}}}} $
     (22) end if
    下載: 導(dǎo)出CSV

    表  2  仿真參數(shù)

    仿真參數(shù)描述取值
    $ {N^{\text{P}}} $物理節(jié)點數(shù)量22
    $ P_n^{\text} $物理節(jié)點待機能耗Uniform[100,150](W)
    $ P_n^{{\text{cpu}}} $物理節(jié)點CPU滿載能耗Uniform[250,300](W)
    $ P_m^{\text{s}} $物理節(jié)點狀態(tài)切換能耗Uniform[15,25](W)
    $ {C_n} $物理節(jié)點CPU資源容量Uniform[200,300](units)
    $ {M_n} $物理節(jié)點存儲資源容量Uniform[300,400](Mbps)
    $ {B_{nm}} $物理鏈路$ {l_{nm}} $帶寬容量Uniform[80,100](Mbps)
    $ F $SFC集合數(shù)量30個
    $ N_i^{\text{V}} $VNF集合長度Uniform[3,5](個)
    $ {T_{{\text{tot}}}} $SFC端到端時延限制30 ms
    下載: 導(dǎo)出CSV
  • [1] LI Defang, HONG Peilin, XUE Kaiping, et al. Availability aware VNF deployment in datacenter through shared redundancy and multi-tenancy[J]. IEEE Transactions on Network and Service Management, 2019, 16(4): 1651–1664. doi: 10.1109/TNSM.2019.2936505
    [2] QU Kaige, ZHUANG Weihua, YE Qiang, et al. Dynamic flow migration for embedded services in SDN/NFV-enabled 5G core networks[J]. IEEE Transactions on Communications, 2020, 68(4): 2394–2408. doi: 10.1109/TCOMM.2020.2968907
    [3] LIU Yicen, LU Hao, LI Xi, et al. An approach for service function chain reconfiguration in network function virtualization architectures[J]. IEEE Access, 2019, 7: 147224–147237. doi: 10.1109/ACCESS.2019.2946648
    [4] TANG Lun, HE Xiaoyu, ZHAO Peipei, et al. Virtual network function migration based on dynamic resource requirements prediction[J]. IEEE Access, 2019, 7: 112348–112362. doi: 10.1109/ACCESS.2019.2935014
    [5] LIU Yicen, LU Yu, LI Xi, et al. On dynamic service function chain reconfiguration in IoT networks[J]. IEEE Internet of Things Journal, 2020, 7(11): 10969–10984. doi: 10.1109/JIOT.2020.2991753
    [6] HUANG Yuzhe, XU Huahu, GAO Honghao, et al. SSUR: An approach to optimizing virtual machine allocation strategy based on user requirements for cloud data center[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(2): 670–681. doi: 10.1109/TGCN.2021.3067374
    [7] DAYARATHNA M, WEN Yonggang, and FAN Rui. Data center energy consumption modeling: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 18(1): 732–794. doi: 10.1109/COMST.2015.2481183
    [8] ERAMO V, AMMAR M, and LAVACCA F G. Migration energy aware reconfigurations of virtual network function instances in NFV architectures[J]. IEEE Access, 2017, 5: 4927–4938. doi: 10.1109/ACCESS.2017.2685437
    [9] HAN Zhenhua, TAN Haisheng, WANG Rui, et al. Energy-efficient dynamic virtual machine management in data centers[J]. IEEE/ACM Transactions on Networking, 2019, 27(1): 344–360. doi: 10.1109/TNET.2019.2891787
    [10] ZHANG Zhongbao, CAO Huafeng, SU Sen, et al. Energy aware virtual network migration[J]. IEEE Transactions on Cloud Computing, 2022, 10(2): 1173–1189. doi: 10.1109/TCC.2020.2976966.
    [11] GUO Zehua, XU Yang, LIU Yafeng, et al. AggreFlow: Achieving power efficiency, load balancing, and quality of service in data center networks[J]. IEEE/ACM Transactions on Networking, 2020, 29(1): 17–33. doi: 10.1109/TNET.2020.3026015
    [12] LI Biyi, CHENG Bo, LIU Xuan, et al. Joint resource optimization and delay-aware virtual network function migration in data center networks[J]. IEEE Transactions on Network and Service Management, 2021, 18(3): 2960–2974. doi: 10.1109/TNSM.2021.3067883
    [13] ZHANG Kunpeng, WU Lan, ZHU Zhaoju, et al. A multitask learning model for traffic flow and speed forecasting[J]. IEEE Access, 2020, 8: 80707–80715. doi: 10.1109/ACCESS.2020.2990958
    [14] LIU Yi, JAMES J J Q, KANG Jiawen, et al. Privacy-preserving traffic flow prediction: A federated learning approach[J]. IEEE Internet of Things Journal, 2020, 7(8): 7751–7763. doi: 10.1109/JIOT.2020.2991401
    [15] ZHANG Zhenyu, LUO Xiangfeng, LIU Tong, et al. Proximal policy optimization with mixed distributed training[C]. The 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, USA, 2019: 1452–1456.
    [16] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv: 1707.06347, 2017.
    [17] BEN YAHIA I G, BENDRISS J, SAMBA A, et al. CogNitive 5G networks: Comprehensive operator use cases with machine learning for management operations[C]. 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 2017: 252–259.
    [18] BENDRISS J, BEN YAHIA I G, and ZEGHLACHE D. Forecasting and anticipating SLO breaches in programmable networks[C]. 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 2017: 127–134.
    [19] BENDRISS J. Cognitive management of SLA in software-based networks[D]. [Ph. D. dissertation], Institut National des Télécommunications, 2018.
  • 加載中
圖(7) / 表(2)
計量
  • 文章訪問數(shù):  1073
  • HTML全文瀏覽量:  770
  • PDF下載量:  178
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2021-07-27
  • 修回日期:  2022-03-23
  • 網(wǎng)絡(luò)出版日期:  2022-03-30
  • 刊出日期:  2022-10-19

目錄

    /

    返回文章
    返回