基于憶阻的全功能巴甫洛夫聯(lián)想記憶電路的設計、實現(xiàn)與分析
doi: 10.11999/JEIT210376 cstr: 32379.14.JEIT210376
-
1.
杭州電子科技大學電子信息學院 杭州 310018
-
2.
浙江大學電氣工程學院 杭州 310027
-
3.
西南大學人工智能學院 重慶 400715
-
4.
英國倫敦布魯奈爾大學電子與計算機工程系 倫敦 UB8 3PH
Memory Circuit Design, Implementation and Analysis Based on Memristor Full-function Pavlov Associative
-
1.
School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
-
2.
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
-
3.
School of Artificial Intelligence, Southwest University, Chongqing 400715, China
-
4.
Department of Electronic and Computer Engineering, Brunel University London, London UB8 3PH, United Kingdom
-
摘要: 聯(lián)想記憶是一種描述生物學習和遺忘過程的重要機制,對構(gòu)建神經(jīng)形態(tài)計算系統(tǒng)和模擬類腦功能有重要的意義,設計并實現(xiàn)聯(lián)想記憶電路成為人工神經(jīng)網(wǎng)絡領(lǐng)域內(nèi)的研究熱點。巴甫洛夫條件反射實驗作為聯(lián)想記憶的經(jīng)典案例之一,其硬件電路的實現(xiàn)方案仍然存在電路設計復雜、功能不完善以及過程描述不清晰等問題?;诖?,該文融合經(jīng)典的條件反射理論和納米科學技術(shù),提出一種基于憶阻的全功能巴甫洛夫聯(lián)想記憶電路。首先,基于水熱合成法和磁控濺射法制備了Ag/TiOx nanobelt/Ti結(jié)構(gòu)的憶阻器,通過電化學工作站、四探針測試臺和透射電子顯微鏡聯(lián)合完成相應的性能測試;接著,利用測試得到的電化學數(shù)據(jù),構(gòu)建了Ag/TiOx nanobelt/Ti憶阻器的數(shù)學模型和SPICE電路模型,并通過客觀評價驗證模型的精確度;進一步,基于提出的Ag/TiOx nanobelt/Ti憶阻器模型,設計了一種全功能巴甫洛夫聯(lián)想記憶電路,通過電路描述和功能分析,論述了該電路能夠正確模擬巴甫洛夫?qū)嶒炛?類學習過程和3類遺忘過程;最后,通過一系列計算機仿真和分析,驗證了所提方案的正確性和有效性。
-
關(guān)鍵詞:
- 憶阻器 /
- 聯(lián)想記憶 /
- 巴普洛夫條件反射 /
- 電路實現(xiàn) /
- 性能測試
Abstract: Associative memory is an important mechanism describing biological learning process and forgetting process, which is of great significance for constructing neuromorphic computing systems, as well as simulating brain-like functions. As a result, the design and implementation of associative memory circuit has become a research hotspot in the field of artificial neural networks. Pavlov conditioning experiment, as one of the classic cases of associative memory, its hardware implementation still suffers from some limitations such as complex circuit configuration, imperfect function and unclear process description. Based on this, a memory circuit is proposed based on memristor full-fuction pavlov associative in this paper, which combines the classical conditioned reflection theory and nano science and technology. Firstly, the Ag/TiOx nanobelt/Ti memristor is prepared using hydrothermal synthesis method and magnetron sputtering method, and its performance testing is conducted jointly by electrochemical workstation, four-probe test bench, and transmission electron microscope. Then, the mathematical model and SPICE circuit model of the Ag/TiOx nanobelt/Ti memristor are built up respectively, based on the electrochemical data derived from the performance testing, and the model accuracy is verified by objective evaluation. Furthermore, the proposed Ag/TiOx nanobelt/Ti memristor model is applied to the implementation of a full-function Pavlovian associative memory circuit. The specific circuit description and function analysis illustrate that this circuit is able to simulate two kinds of learning process and three kinds of forgetting process in Pavlov experiment. Finally, a series of computer simulation and analysis are carried out, which verifies the validity and effectiveness of the entire scheme.-
Key words:
- Memristor /
- Associative memory /
- Pavlov conditioning /
- Circuit implementation /
- Performance testing
-
表 2 Ag/TiOx nanobelt/Ti憶阻器SPICE模型子電路描述
* Ag/TiOx nanobelt/Ti memristor .SUBCKT IJBCMEM Plus Minus PARAMS: +kL=-6 AlphaL=2 aL=-1 wL=2 a1=0.22 b1=-0.38 c1=0.166 d1=9.96E-05 kH=3E-3 AlphaH=4 aH=-1 wH=1 +a2=0.22 b2=-10 b2=-10 c2=8.15 d2=3E-08 Vth1=0 Vth2=0 ****************Differential equation mode*************** Gx 0 x value={F(V(x),V(Plus,Minus),aL,aH,wL,wH,kL,kH,AlphaL,AlphaH)} Cx x 0 1 IC={0} Raux x 0 1T ***********************Ohms law*********************** Gm Plus Minus value={IVRel(V(x),V(Plus,Minus),a1,a2,b1,b2,c1,c2,d1,d2)} ***********************Functions*********************** .func f1(x,v,kL,AlphaL,aL,wL)={kL*v^AlphaL*exp(-exp(aL*x+wL))} .func f2(x,v,kH,AlphaH,aH,wH)={kH*v^AlphaH*exp(-exp(aH*x+wH))} .func f3(x,v,a1,b1,c1,d1)={a1*x*exp(b1*x^3+c1)*sinh(d1*(v)^3)} .func f4(x,v,a2,b2,c2,d2)={a2*x*exp(b2*x^3+c2)*sinh(d2*(v)^3)} .func F(x,v,aL,aH,wL,wH,kL,kH,AlphaL,AlphaH)={if(v<Vth1,f1(x,v,kL,AlphaL,aL,wL), +if(v>Vth2,f2(x,v,kH,AlphaH,aH,wH),0))} .func IVRel(x,v,a1,a2,b1,b2,c1,c2,d1,d2)={if(v<Vth1,f3(x,v,a1,b1,c1,d1),if(v>Vth2,f4(x,v,a2,b2,c2,d2),0))} ENDS Ag/TiOx nanobelt/Ti memristor 下載: 導出CSV
-
[1] ZYARAH A M, GOMEZ K, and KUDITHIPUDI D. Neuromorphic system for spatial and temporal information processing[J]. IEEE Transactions on Computers, 2020, 69(8): 1099–1112. [2] RYU J H, KIM B, HUSSAIN F, et al. Bio-inspired synaptic functions from a transparent zinc-tin-oxide-based memristor for neuromorphic engineering[J]. Applied Surface Science, 2021, 544: 148796. doi: 10.1016/j.apsusc.2020.148796 [3] 董哲康, 杜晨杰, 林輝品, 等. 基于多通道憶阻脈沖耦合神經(jīng)網(wǎng)絡的多幀圖像超分辨率重建算法[J]. 電子與信息學報, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868DONG Zhekang, DU Chenjie, LIN Huipin, et al. Multi-channel memristive pulse coupled neural network based multi-frame images super-resolution reconstruction algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868 [4] DONG Zhekang, LAI C S, ZHANG Zhaowei, et al. Neuromorphic extreme learning machines with bimodal memristive synapses[J]. Neurocomputing, 2021, 453: 38–49. doi: 10.1016/j.neucom.2021.04.049 [5] DONG Zhekang, QI Donglian, HE Yufei, et al. Easily cascaded memristor-CMOS hybrid circuit for high-efficiency boolean logic implementation[J]. International Journal of Bifurcation and Chaos, 2018, 28(12): 1850149. doi: 10.1142/S0218127418501493 [6] YANG Zijia and WANG Xiaoping. Memristor-based BAM circuit implementation for image associative memory and filling-in[J]. Neural Computing and Applications, 2021, 33(13): 7929–7942. doi: 10.1007/s00521-020-05538-7 [7] ZIEGLER M, SONI R, PATELCZYK T, et al. An electronic version of Pavlov’s dog[J]. Advanced Functional Materials, 2012, 22(13): 2744–2749. doi: 10.1002/adfm.201200244 [8] BICHLER O, ZHAO W, ALIBART F, et al. Pavlov’s dog associative learning demonstrated on synaptic-like organic transistors[J]. Neural Computation, 2013, 25(2): 549–566. doi: 10.1162/NECO_a_00377 [9] HU S G, LIU Y, LIU Z, et al. Synaptic long-term potentiation realized in Pavlov’s dog model based on a NiOx-based memristor[J]. Journal of Applied Physics, 2014, 116(21): 214502. doi: 10.1063/1.4902515 [10] LI Yi, XU Lei, ZHONG Yingpeng, et al. Associative learning with temporal contiguity in a memristive circuit for large-scale neuromorphic networks[J]. Advanced Electronic Materials, 2015, 1(8): 1500125. doi: 10.1002/aelm.201500125 [11] YU Fei, ZHU Liqiang, XIAO Hui, et al. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and Pavlovian associative learning activities[J]. Advanced Functional Materials, 2018, 28(44): 1804025. doi: 10.1002/adfm.201804025 [12] 徐威, 王鈺琪, 李岳峰, 等. 新型憶阻器神經(jīng)形態(tài)電路的設計及其在條件反射行為中的應用[J]. 物理學報, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023XU Wei, WANG Yuqi, LI Yuefeng, et al. Design of novel memristor-based neuromorphic circuit and its application in classical conditioning[J]. Acta Physica Sinica, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023 [13] PEI Yifei, ZHOU Zhenyu, CHEN A P, et al. A carbon-based memristor design for associative learning activities and neuromorphic computing[J]. Nanoscale, 2020, 12(25): 13531–13539. doi: 10.1039/D0NR02894K [14] PERSHIN Y V and DI VENTRA M. Experimental demonstration of associative memory with memristive neural networks[J]. Neural Networks, 2010, 23(7): 881–886. doi: 10.1016/j.neunet.2010.05.001 [15] CHEN Ling, LI Chuandong, WANG Xin, et al. Associate learning and correcting in a memristive neural network[J]. Neural Computing and Applications, 2013, 22(6): 1071–1076. doi: 10.1007/s00521-012-0868-7 [16] WANG Lidan, LI Huifang, DUAN Shukai, et al. Pavlov associative memory in a memristive neural network and its circuit implementation[J]. Neurocomputing, 2016, 171: 23–29. doi: 10.1016/j.neucom.2015.05.078 [17] YANG Le, ZENG Zhigang, and WEN Shiping. A full-function Pavlov associative memory implementation with memristance changing circuit[J]. Neurocomputing, 2018, 272: 513–519. doi: 10.1016/j.neucom.2017.07.020 [18] SHANG Meijia and WANG Xiaoping. A memristor-based circuit design for generalization and differentiation on Pavlov associative memory[J]. Neurocomputing, 2020, 389: 18–26. doi: 10.1016/j.neucom.2019.12.106 [19] SUN Junwei, HAN Juntao, LIU Peng, et al. Memristor-based neural network circuit of Pavlov associative memory with dual mode switching[J]. AEU-International Journal of Electronics and Communications, 2021, 129: 153552. doi: 10.1016/j.aeue.2020.153552 [20] LO H Y, YANG C Y, HUANG G M, et al. Observing topotactic phase transformation and resistive switching behaviors in low power SrCoOx memristor[J]. Nano Energy, 2020, 72: 104683. doi: 10.1016/j.nanoen.2020.104683 [21] ZHOU Guangdong, REN Zhijun, SUN Bai, et al. Capacitive effect: An original of the resistive switching memory[J]. Nano Energy, 2020, 68: 104386. doi: 10.1016/j.nanoen.2019.104386 [22] ZHOU Guangdong, REN Zhijun, WANG Lidan, et al. Resistive switching memory integrated with amorphous carbon-based nanogenerators for self-powered device[J]. Nano Energy, 2019, 63: 103793. doi: 10.1016/j.nanoen.2019.05.079 [23] YU L S, LIU Q Z, XING Q J, et al. The role of the tunneling component in the current-voltage characteristics of metal-GaN Schottky diodes[J]. Journal of Applied Physics, 1998, 84(4): 2099–2104. doi: 10.1063/1.368270 [24] AFIFI A, AYATOLLAHI A, and RAISSI F. STDP implementation using memristive nanodevice in CMOS-Nano neuromorphic networks[J]. IEICE Electronics Express, 2009, 6(3): 148–153. doi: 10.1587/elex.6.148 [25] LI Junrui, DONG Zhekang, LUO Li, et al. A novel versatile window function for memristor model with application in spiking neural network[J]. Neurocomputing, 2020, 405: 239–246. doi: 10.1016/j.neucom.2020.04.111 [26] HUTTER F, HOOS H H, and LEYTON-BROWN K. Sequential model-based optimization for general algorithm configuration[C]. The 5th International Conference on Learning and Intelligent Optimization, Rome, Italy, 2011: 507–523. [27] LIN G F and CHEN L H. A non-linear rainfall-runoff model using radial basis function network[J]. Journal of Hydrology, 2004, 289(1/4): 1–8. [28] RESCORLA R A. Pavlovian conditioning: It’s not what you think it is[J]. American Psychologist, 1988, 43(3): 151–160. doi: 10.1037/0003-066X.43.3.151 [29] RESCORLA R A. Behavioral studies of Pavlovian conditioning[J]. Annual Review of Neuroscience, 1988, 11: 329–352. doi: 10.1146/annurev.ne.11.030188.001553 [30] ALSAEED N H. Wish you were here: A psychological analysis using Atkinson-Shiffrin memory mode[J]. Journal of Literature and Art Studies, 2017, 6(5): 521–527. [31] BARKER R W J and HART B L. Precision absolute-value circuit technique[J]. International Journal of Electronics, 1989, 66(3): 445–448. doi: 10.1080/00207218908925401 -