一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于憶阻的全功能巴甫洛夫聯(lián)想記憶電路的設計、實現(xiàn)與分析

董哲康 錢智凱 周廣東 紀曉悅 齊冬蓮 賴俊升

董哲康, 錢智凱, 周廣東, 紀曉悅, 齊冬蓮, 賴俊升. 基于憶阻的全功能巴甫洛夫聯(lián)想記憶電路的設計、實現(xiàn)與分析[J]. 電子與信息學報, 2022, 44(6): 2080-2092. doi: 10.11999/JEIT210376
引用本文: 董哲康, 錢智凱, 周廣東, 紀曉悅, 齊冬蓮, 賴俊升. 基于憶阻的全功能巴甫洛夫聯(lián)想記憶電路的設計、實現(xiàn)與分析[J]. 電子與信息學報, 2022, 44(6): 2080-2092. doi: 10.11999/JEIT210376
DONG Zhekang, QIAN Zhikai, ZHOU Guangdong, JI Xiaoyue, QI Donglian, LAI Junsheng. Memory Circuit Design, Implementation and Analysis Based on Memristor Full-function Pavlov Associative[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2080-2092. doi: 10.11999/JEIT210376
Citation: DONG Zhekang, QIAN Zhikai, ZHOU Guangdong, JI Xiaoyue, QI Donglian, LAI Junsheng. Memory Circuit Design, Implementation and Analysis Based on Memristor Full-function Pavlov Associative[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2080-2092. doi: 10.11999/JEIT210376

基于憶阻的全功能巴甫洛夫聯(lián)想記憶電路的設計、實現(xiàn)與分析

doi: 10.11999/JEIT210376 cstr: 32379.14.JEIT210376
基金項目: 國家自然科學基金(62001149),浙江省自然科學基金(LQ21F010009)
詳細信息
    作者簡介:

    董哲康:男,1989年生,副教授,研究方向為憶阻理論、基于憶阻神經(jīng)形態(tài)系統(tǒng)

    錢智凱:男,1996年生,碩士生,研究方向為憶阻理論、基于憶阻神經(jīng)形態(tài)系統(tǒng)

    周廣東:男,1986年生,教授,研究方向為憶阻制備及其物理機制研究、基于憶阻神經(jīng)形態(tài)系統(tǒng)

    紀曉悅:女,1993年生,博士生,研究方向為憶阻理論、基于憶阻器的神經(jīng)形態(tài)系統(tǒng)

    齊冬蓮:女,1973年生,教授,研究方向為憶阻器理論、基于憶阻器的非線性系統(tǒng)

    賴俊升:男,1991年生,助理教授,研究方向為非線性系統(tǒng)、神經(jīng)形態(tài)系統(tǒng)

    通訊作者:

    紀曉悅 ji.xiaoyue@zju.edu.cn

  • 中圖分類號: TN601; TP183

Memory Circuit Design, Implementation and Analysis Based on Memristor Full-function Pavlov Associative

Funds: The National Natural Science Foundation of China (62001149), Natural Science Foundation of Zhejiang Province (LQ21F010009)
  • 摘要: 聯(lián)想記憶是一種描述生物學習和遺忘過程的重要機制,對構(gòu)建神經(jīng)形態(tài)計算系統(tǒng)和模擬類腦功能有重要的意義,設計并實現(xiàn)聯(lián)想記憶電路成為人工神經(jīng)網(wǎng)絡領(lǐng)域內(nèi)的研究熱點。巴甫洛夫條件反射實驗作為聯(lián)想記憶的經(jīng)典案例之一,其硬件電路的實現(xiàn)方案仍然存在電路設計復雜、功能不完善以及過程描述不清晰等問題?;诖?,該文融合經(jīng)典的條件反射理論和納米科學技術(shù),提出一種基于憶阻的全功能巴甫洛夫聯(lián)想記憶電路。首先,基于水熱合成法和磁控濺射法制備了Ag/TiOx nanobelt/Ti結(jié)構(gòu)的憶阻器,通過電化學工作站、四探針測試臺和透射電子顯微鏡聯(lián)合完成相應的性能測試;接著,利用測試得到的電化學數(shù)據(jù),構(gòu)建了Ag/TiOx nanobelt/Ti憶阻器的數(shù)學模型和SPICE電路模型,并通過客觀評價驗證模型的精確度;進一步,基于提出的Ag/TiOx nanobelt/Ti憶阻器模型,設計了一種全功能巴甫洛夫聯(lián)想記憶電路,通過電路描述和功能分析,論述了該電路能夠正確模擬巴甫洛夫?qū)嶒炛?類學習過程和3類遺忘過程;最后,通過一系列計算機仿真和分析,驗證了所提方案的正確性和有效性。
  • 圖  1  Ag/TiOx nanobelt/Ti憶阻器的制備過程

    圖  2  Ag/TiOx nanobelt/Ti憶阻器的性能測試

    圖  3  Ag/TiOx nanobelt/Ti憶阻器建模

    圖  4  基于憶阻的全功能巴甫洛夫聯(lián)想記憶電路

    圖  5  情況1(初始狀態(tài))的電路仿真結(jié)果

    圖  6  情況2(L1)的電路仿真結(jié)果

    圖  7  情況3(F1)的電路仿真結(jié)果

    圖  8  情況4(L1)的電路仿真結(jié)果

    圖  9  情況5(F2)的電路仿真結(jié)果

    圖  10  情況6(L2)的電路仿真結(jié)果

    圖  11  情況7(F3)的電路仿真結(jié)果

    表  1  巴甫洛夫聯(lián)想記憶電路的對比信息匯總

    性能文獻[7]文獻[8,9,12,13]文獻[10,11]文獻[14]文獻[15]文獻[16]文獻[17,18,19]本文工作
    實物支撐
    功能完備性一類學習
    無遺忘
    一類學習
    一類遺忘
    一類學習
    一類遺忘
    一類學習
    無遺忘
    兩類學習
    一類遺忘
    兩類學習
    兩類遺忘
    兩類學習
    三類遺忘
    兩類學習
    三類遺忘
    電路復雜度簡單簡單簡單中等復雜中等復雜中等
    生物特性
    下載: 導出CSV

    表  2  Ag/TiOx nanobelt/Ti憶阻器SPICE模型子電路描述

    * Ag/TiOx nanobelt/Ti memristor
    .SUBCKT IJBCMEM Plus Minus PARAMS:
    +kL=-6 AlphaL=2 aL=-1 wL=2 a1=0.22 b1=-0.38 c1=0.166 d1=9.96E-05 kH=3E-3 AlphaH=4 aH=-1 wH=1
    +a2=0.22 b2=-10 b2=-10 c2=8.15 d2=3E-08 Vth1=0 Vth2=0
    ****************Differential equation mode***************
    Gx 0 x value={F(V(x),V(Plus,Minus),aL,aH,wL,wH,kL,kH,AlphaL,AlphaH)}
    Cx x 0 1 IC={0}
    Raux x 0 1T
    ***********************Ohms law***********************
    Gm Plus Minus value={IVRel(V(x),V(Plus,Minus),a1,a2,b1,b2,c1,c2,d1,d2)}
    ***********************Functions***********************
    .func f1(x,v,kL,AlphaL,aL,wL)={kL*v^AlphaL*exp(-exp(aL*x+wL))}
    .func f2(x,v,kH,AlphaH,aH,wH)={kH*v^AlphaH*exp(-exp(aH*x+wH))}
    .func f3(x,v,a1,b1,c1,d1)={a1*x*exp(b1*x^3+c1)*sinh(d1*(v)^3)}
    .func f4(x,v,a2,b2,c2,d2)={a2*x*exp(b2*x^3+c2)*sinh(d2*(v)^3)}
    .func F(x,v,aL,aH,wL,wH,kL,kH,AlphaL,AlphaH)={if(v<Vth1,f1(x,v,kL,AlphaL,aL,wL),
    +if(v>Vth2,f2(x,v,kH,AlphaH,aH,wH),0))}
    .func IVRel(x,v,a1,a2,b1,b2,c1,c2,d1,d2)={if(v<Vth1,f3(x,v,a1,b1,c1,d1),if(v>Vth2,f4(x,v,a2,b2,c2,d2),0))}
    ENDS Ag/TiOx nanobelt/Ti memristor
    下載: 導出CSV

    表  3  巴甫洛夫聯(lián)想記憶信息匯總

    學習過程遺忘過程
        /        /        /
      
    下載: 導出CSV
  • [1] ZYARAH A M, GOMEZ K, and KUDITHIPUDI D. Neuromorphic system for spatial and temporal information processing[J]. IEEE Transactions on Computers, 2020, 69(8): 1099–1112.
    [2] RYU J H, KIM B, HUSSAIN F, et al. Bio-inspired synaptic functions from a transparent zinc-tin-oxide-based memristor for neuromorphic engineering[J]. Applied Surface Science, 2021, 544: 148796. doi: 10.1016/j.apsusc.2020.148796
    [3] 董哲康, 杜晨杰, 林輝品, 等. 基于多通道憶阻脈沖耦合神經(jīng)網(wǎng)絡的多幀圖像超分辨率重建算法[J]. 電子與信息學報, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868

    DONG Zhekang, DU Chenjie, LIN Huipin, et al. Multi-channel memristive pulse coupled neural network based multi-frame images super-resolution reconstruction algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868
    [4] DONG Zhekang, LAI C S, ZHANG Zhaowei, et al. Neuromorphic extreme learning machines with bimodal memristive synapses[J]. Neurocomputing, 2021, 453: 38–49. doi: 10.1016/j.neucom.2021.04.049
    [5] DONG Zhekang, QI Donglian, HE Yufei, et al. Easily cascaded memristor-CMOS hybrid circuit for high-efficiency boolean logic implementation[J]. International Journal of Bifurcation and Chaos, 2018, 28(12): 1850149. doi: 10.1142/S0218127418501493
    [6] YANG Zijia and WANG Xiaoping. Memristor-based BAM circuit implementation for image associative memory and filling-in[J]. Neural Computing and Applications, 2021, 33(13): 7929–7942. doi: 10.1007/s00521-020-05538-7
    [7] ZIEGLER M, SONI R, PATELCZYK T, et al. An electronic version of Pavlov’s dog[J]. Advanced Functional Materials, 2012, 22(13): 2744–2749. doi: 10.1002/adfm.201200244
    [8] BICHLER O, ZHAO W, ALIBART F, et al. Pavlov’s dog associative learning demonstrated on synaptic-like organic transistors[J]. Neural Computation, 2013, 25(2): 549–566. doi: 10.1162/NECO_a_00377
    [9] HU S G, LIU Y, LIU Z, et al. Synaptic long-term potentiation realized in Pavlov’s dog model based on a NiOx-based memristor[J]. Journal of Applied Physics, 2014, 116(21): 214502. doi: 10.1063/1.4902515
    [10] LI Yi, XU Lei, ZHONG Yingpeng, et al. Associative learning with temporal contiguity in a memristive circuit for large-scale neuromorphic networks[J]. Advanced Electronic Materials, 2015, 1(8): 1500125. doi: 10.1002/aelm.201500125
    [11] YU Fei, ZHU Liqiang, XIAO Hui, et al. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and Pavlovian associative learning activities[J]. Advanced Functional Materials, 2018, 28(44): 1804025. doi: 10.1002/adfm.201804025
    [12] 徐威, 王鈺琪, 李岳峰, 等. 新型憶阻器神經(jīng)形態(tài)電路的設計及其在條件反射行為中的應用[J]. 物理學報, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023

    XU Wei, WANG Yuqi, LI Yuefeng, et al. Design of novel memristor-based neuromorphic circuit and its application in classical conditioning[J]. Acta Physica Sinica, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [13] PEI Yifei, ZHOU Zhenyu, CHEN A P, et al. A carbon-based memristor design for associative learning activities and neuromorphic computing[J]. Nanoscale, 2020, 12(25): 13531–13539. doi: 10.1039/D0NR02894K
    [14] PERSHIN Y V and DI VENTRA M. Experimental demonstration of associative memory with memristive neural networks[J]. Neural Networks, 2010, 23(7): 881–886. doi: 10.1016/j.neunet.2010.05.001
    [15] CHEN Ling, LI Chuandong, WANG Xin, et al. Associate learning and correcting in a memristive neural network[J]. Neural Computing and Applications, 2013, 22(6): 1071–1076. doi: 10.1007/s00521-012-0868-7
    [16] WANG Lidan, LI Huifang, DUAN Shukai, et al. Pavlov associative memory in a memristive neural network and its circuit implementation[J]. Neurocomputing, 2016, 171: 23–29. doi: 10.1016/j.neucom.2015.05.078
    [17] YANG Le, ZENG Zhigang, and WEN Shiping. A full-function Pavlov associative memory implementation with memristance changing circuit[J]. Neurocomputing, 2018, 272: 513–519. doi: 10.1016/j.neucom.2017.07.020
    [18] SHANG Meijia and WANG Xiaoping. A memristor-based circuit design for generalization and differentiation on Pavlov associative memory[J]. Neurocomputing, 2020, 389: 18–26. doi: 10.1016/j.neucom.2019.12.106
    [19] SUN Junwei, HAN Juntao, LIU Peng, et al. Memristor-based neural network circuit of Pavlov associative memory with dual mode switching[J]. AEU-International Journal of Electronics and Communications, 2021, 129: 153552. doi: 10.1016/j.aeue.2020.153552
    [20] LO H Y, YANG C Y, HUANG G M, et al. Observing topotactic phase transformation and resistive switching behaviors in low power SrCoOx memristor[J]. Nano Energy, 2020, 72: 104683. doi: 10.1016/j.nanoen.2020.104683
    [21] ZHOU Guangdong, REN Zhijun, SUN Bai, et al. Capacitive effect: An original of the resistive switching memory[J]. Nano Energy, 2020, 68: 104386. doi: 10.1016/j.nanoen.2019.104386
    [22] ZHOU Guangdong, REN Zhijun, WANG Lidan, et al. Resistive switching memory integrated with amorphous carbon-based nanogenerators for self-powered device[J]. Nano Energy, 2019, 63: 103793. doi: 10.1016/j.nanoen.2019.05.079
    [23] YU L S, LIU Q Z, XING Q J, et al. The role of the tunneling component in the current-voltage characteristics of metal-GaN Schottky diodes[J]. Journal of Applied Physics, 1998, 84(4): 2099–2104. doi: 10.1063/1.368270
    [24] AFIFI A, AYATOLLAHI A, and RAISSI F. STDP implementation using memristive nanodevice in CMOS-Nano neuromorphic networks[J]. IEICE Electronics Express, 2009, 6(3): 148–153. doi: 10.1587/elex.6.148
    [25] LI Junrui, DONG Zhekang, LUO Li, et al. A novel versatile window function for memristor model with application in spiking neural network[J]. Neurocomputing, 2020, 405: 239–246. doi: 10.1016/j.neucom.2020.04.111
    [26] HUTTER F, HOOS H H, and LEYTON-BROWN K. Sequential model-based optimization for general algorithm configuration[C]. The 5th International Conference on Learning and Intelligent Optimization, Rome, Italy, 2011: 507–523.
    [27] LIN G F and CHEN L H. A non-linear rainfall-runoff model using radial basis function network[J]. Journal of Hydrology, 2004, 289(1/4): 1–8.
    [28] RESCORLA R A. Pavlovian conditioning: It’s not what you think it is[J]. American Psychologist, 1988, 43(3): 151–160. doi: 10.1037/0003-066X.43.3.151
    [29] RESCORLA R A. Behavioral studies of Pavlovian conditioning[J]. Annual Review of Neuroscience, 1988, 11: 329–352. doi: 10.1146/annurev.ne.11.030188.001553
    [30] ALSAEED N H. Wish you were here: A psychological analysis using Atkinson-Shiffrin memory mode[J]. Journal of Literature and Art Studies, 2017, 6(5): 521–527.
    [31] BARKER R W J and HART B L. Precision absolute-value circuit technique[J]. International Journal of Electronics, 1989, 66(3): 445–448. doi: 10.1080/00207218908925401
  • 加載中
圖(11) / 表(3)
計量
  • 文章訪問數(shù):  3588
  • HTML全文瀏覽量:  1140
  • PDF下載量:  267
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2021-04-30
  • 修回日期:  2021-08-26
  • 網(wǎng)絡出版日期:  2021-09-15
  • 刊出日期:  2022-06-21

目錄

    /

    返回文章
    返回