時(shí)分波分無(wú)源光網(wǎng)絡(luò)與云無(wú)線接入網(wǎng)聯(lián)合架構(gòu)中負(fù)載平衡的用戶關(guān)聯(lián)與資源分配策略
doi: 10.11999/JEIT200849 cstr: 32379.14.JEIT200849
-
1.
重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065
-
2.
重慶高校市級(jí)光通信與網(wǎng)絡(luò)重點(diǎn)實(shí)驗(yàn)室 重慶 400065
-
3.
泛在感知與互聯(lián)重慶市重點(diǎn)實(shí)驗(yàn)室 重慶 400065
Load Balancing User Association and Resource Allocation Strategy in Time and Wavelength Division Multiplexed Passive Optical Network and Cloud Radio Access Network Joint Architecture
-
1.
School of Telecommunication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Chongqing Key Laboratory of Optical Communication and Network, Chongqing 400065, China
-
3.
Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing 400065, China
-
摘要: 在時(shí)分波分無(wú)源光網(wǎng)絡(luò)(TWDM-PON)與云無(wú)線接入網(wǎng)(C-RAN)的聯(lián)合架構(gòu)中,由于無(wú)線域的負(fù)載不均衡問題,限制了網(wǎng)絡(luò)整體的傳輸效率。為了充分利用TWDM-PON與C-RAN聯(lián)合架構(gòu)的網(wǎng)絡(luò)資源,并保證用戶的服務(wù)質(zhì)量(QoS),該文提出一種負(fù)載平衡的用戶關(guān)聯(lián)與資源分配算法(LBUARA)。首先根據(jù)不同用戶的服務(wù)質(zhì)量需求以及分布式無(wú)線射頻頭端(RRH)的負(fù)載對(duì)用戶的影響,構(gòu)建用戶收益函數(shù)。進(jìn)而,在保證用戶服務(wù)質(zhì)量的前提下,根據(jù)網(wǎng)絡(luò)狀態(tài)建立隨機(jī)博弈模型,并基于多智能體Q學(xué)習(xí)提出負(fù)載均衡的用戶關(guān)聯(lián)和資源分配算法,從而獲得最優(yōu)的用戶關(guān)聯(lián)與資源分配方案。仿真結(jié)果表明,所提的用戶關(guān)聯(lián)和資源分配策略能夠?qū)崿F(xiàn)網(wǎng)絡(luò)的負(fù)載均衡,保證用戶的服務(wù)質(zhì)量,并提高網(wǎng)絡(luò)吞吐量。
-
關(guān)鍵詞:
- 云無(wú)線接入網(wǎng) /
- 時(shí)分波分無(wú)源光網(wǎng)絡(luò) /
- 負(fù)載均衡 /
- 用戶關(guān)聯(lián) /
- 服務(wù)質(zhì)量
Abstract: The load imbalance in the wireless domain limits the overall transmission efficiency of the network in the joint architecture of Time and Wavelength Division Multiplexed Passive Optical Network (TWDM-PON) and Cloud Radio Access Network (C-RAN). A Load Balancing User Association and Resource Allocation (LBUARA) algorithm is proposed to ensure the Quality of Service(QoS) of users, and make full use of network resources TWDM-PON jointly with C-RAN architecture. Firstly, the user revenue function is constructed according to the service quality requirements of different users and the impact of Remote Radio Head (RRH) load on users. Furthermore, a random game model is established according to the network state, under the premise of ensuring the quality of user service. A user association and resource allocation algorithm based on multi-agent Q-learning load balancing is proposed to obtain the optimal user association and resource allocation plan. The simulation results show that users association and resource allocation strategies mentioned can achieve load balancing network to ensure quality of service users, and improve network throughput. -
表 1 負(fù)載均衡的用戶關(guān)聯(lián)和資源分配算法
(1) 初始化episode,每個(gè)用戶的Q值${Q_i}(s,{a_i})$以及${\phi _i}({s_i},{a_i})$ (2) for each step of an episode to t steps do (3) for each UE i do (4) 在狀態(tài)${s_i}$時(shí)通過式(21)選擇動(dòng)作${a_i}$ (5) 通過式(7)計(jì)算為每個(gè)用戶分配的RB數(shù)量 (6) 通過式(13)計(jì)算Vi (7) 每個(gè)用戶獲取關(guān)聯(lián)狀態(tài)$s'$,設(shè)置 $s' \to s$ (8) 通過式(20)更新${Q_i}(s,{a_i})$ (9) 更新${\phi _i}({s_i},{a_i})$ (10) end for (11) if 當(dāng)前狀態(tài)集合$S = \{ 1,1,···,1\} $ (12) break (13) end if (14) 最終所有的用戶得到關(guān)聯(lián)策略$({s_i},{a_i})$ 下載: 導(dǎo)出CSV
-
[1] REN Hong, LIU Nan, PAN Cunhua, et al. Low-latency C-RAN: An next-generation wireless approach[J]. IEEE Vehicular Technology Magazine, 2018, 13(2): 48–56. doi: 10.1109/MVT.2018.2811244 [2] ZHAO Wentao and WANG Shaowei. Traffic density-based RRH selection for power saving in C-RAN[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3157–3167. doi: 10.1109/JSAC.2016.2600414 [3] KALIL M, Al-DWEIK A, SHARKH M A, et al. A framework for joint wireless network virtualization and cloud radio access networks for next generation wireless networks[J]. IEEE Access, 2017, 5: 20814–20827. doi: 10.1109/ACCESS.2017.2746666 [4] SIMEONE O, MAEDER A, PENG Mugen, et al. Cloud radio access network: Virtualizing wireless access for dense heterogeneous systems[J]. Journal of Communications and Networks, 2016, 18(2): 135–149. doi: 10.1109/JCN.2016.000023 [5] ZHANG Zhiguo, CHEN Yanxu, CAI Shanyong, et al. Colorless-light and tunable-light-source schemes for TWDM and WDM PONs[J]. IEEE Communications Magazine, 2018, 56(8): 120–128. doi: 10.1109/MCOM.2018.1700751 [6] WANG Xinbo, CAVDAR C, WANG Lin, et al. Virtualized cloud radio access network for 5G transport[J]. IEEE Communications Magazine, 2017, 55(9): 202–209. doi: 10.1109/MCOM.2017.1600866 [7] 王汝言, 徐寧寧, 吳大鵬. 能耗和時(shí)延感知的虛擬化云無(wú)線接入網(wǎng)絡(luò)資源分配機(jī)制[J]. 電子與信息學(xué)報(bào), 2019, 41(1): 83–90. doi: 10.11999/JEIT180063WANG Ruyan, XU Ningning, and WU Dapeng. Energy consumption and delay-aware resource allocation mechanism for virtualization cloud radio access network[J]. Journal of Electronics &Information Technology, 2019, 41(1): 83–90. doi: 10.11999/JEIT180063 [8] ALNOMAN A, CARVALHO G H S, ANPALAGAN A, et al. Energy efficiency on fully cloudified mobile networks: Survey, challenges, and open issues[J]. IEEE Communications Surveys & Tutorials, 2018, 20(2): 1271–1291. doi: 10.1109/COMST.2017.2780238 [9] WU Dapeng, ZHANG Zhihao, WU Shaoen, et al. Biologically inspired resource allocation for network slices in 5G-enabled internet of things[J]. IEEE Internet of Things Journal, 2019, 6(6): 9266–9279. doi: 10.1109/JIOT.2018.2888543 [10] ALI M, RABBANI Q, NAEEM M, et al. Joint user association, power allocation, and throughput maximization in 5G H-CRAN networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 9254–9262. doi: 10.1109/TVT.2017.2715229 [11] 王汝言, 李宏娟, 吳大鵬. 基于Stackelberg博弈的虛擬化無(wú)線傳感網(wǎng)絡(luò)資源分配策略[J]. 電子與信息學(xué)報(bào), 2019, 41(2): 377–384. doi: 10.11999/JEIT180277WANG Ruyan, LI Hongjuan, and WU Dapeng. Stackelberg game-based resource allocation strategy in virtualized wireless sensor network[J]. Journal of Electronics &Information Technology, 2019, 41(2): 377–384. doi: 10.11999/JEIT180277 [12] ELHATTAB M K, ELMESALAWY M M, and ISMAIL T. Fronthaul-aware user association in 5G heterogeneous cloud radio access networks: A matching game perspective[C]. 2018 International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy, 2018. doi: 10.1109/ISNCC.2018.8531056. [13] WU Dapeng, LIU Jia, and YANG Zhigang. Bilateral satisfaction aware participant selection with MEC for mobile crowd sensing[J]. IEEE Access, 2020, 8: 48110–48122. doi: 10.1109/ACCESS.2020.2978774 [14] SU Gongchao, CHEN Bin, LIN Xiaohui, et al. A sequential auction game for QoS-aware user association in heterogeneous cellular networks[C]. Proceedings of 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), Prague, Czech Republic, 2018: 464–468. doi: 10.1109/ICUFN.2018.8436793. [15] GE Xin, LI Xiuhua, JIN Hu, et al. Joint user association and user scheduling for load balancing in heterogeneous networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(5): 3211–3225. doi: 10.1109/TWC.2018.2808488 [16] PROSKOCHYLO A, ZRIAKHOV M, and AKULYNICHEV A. The effects of queueing algorithms on QoS for real-time traffic in process of load balancing[C]. 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 2018: 575–580. doi: 10.1109/INFOCOMMST.2018.8632161. [17] WANG Feng, CHEN Wen, TANG Hongying, et al. Joint optimization of user association, subchannel allocation, and power allocation in multi-cell multi-association OFDMA heterogeneous networks[J]. IEEE Transactions on Communications, 2017, 65(6): 2672–2684. doi: 10.1109/TCOMM.2017.2678986 [18] AWAIS M, AHMED A, NAEEM M, et al. Efficient joint user association and resource allocation for cloud radio access networks[J]. IEEE Access, 2017, 5: 1439–1448. doi: 10.1109/ACCESS.2017.2663758 [19] 王汝言, 池文祥, 張鴻. WOBAN中基于令牌桶算法的自適應(yīng)流量整形策略[J]. 電子與信息學(xué)報(bào), 2017, 39(6): 1401–1408. doi: 10.11999/JEIT160974WANG Ruyan, CHI Wenxiang, and ZHANG Hong. Adaptive traffic shaping policy based on token bucket algorithm of wireless-optical broadband access network[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1401–1408. doi: 10.11999/JEIT160974 [20] WANG Kaidi, LIU Yuanwei, DING Zhiguo, et al. User association and power allocation for multi-cell non-orthogonal multiple access networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5284–5298. doi: 10.1109/TWC.2019.2935433 [21] SCHERER W T, ADAMS S, and BELING P A. On the practical art of state definitions for Markov decision process construction[J]. IEEE Access, 2018, 6: 21115–21128. doi: 10.1109/ACCESS.2018.2819940 [22] JANG B, KIM M, HARERIMANA G, et al. Q-learning algorithms: A comprehensive classification and applications[J]. IEEE Access, 2019, 7: 133653–133667. doi: 10.1109/ACCESS.2019.2941229 [23] LI Dong, ZHANG Haijun, LONG Keping, et al. User association and power allocation based on q-learning in ultra dense heterogeneous networks[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–5. doi: 10.1109/GLOBECOM38437.2019.9013455. [24] ZHAO Nan, LIANG Yingchang, NIYATO D, et al. Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5141–5152. doi: 10.1109/TWC.2019.2933417 [25] CHEN Xianfu, ZHAO Zhifeng, and ZHANG Honggang. Stochastic power adaptation with multiagent reinforcement learning for cognitive wireless mesh networks[J]. IEEE Transactions on Mobile Computing, 2013, 12(11): 2155–2166. doi: 10.1109/TMC.2012.178 [26] SEDIQ A B, GOHARY R H, SCHOENEN R, et al. Optimal tradeoff between sum-rate efficiency and Jain’s fairness index in resource allocation[J]. IEEE Transactions on Wireless Communications, 2013, 12(7): 3496–3509. doi: 10.1109/TWC.2013.061413.121703 -