基于Ransac算法的捷變頻聯(lián)合正交頻分復(fù)用雷達(dá)高速多目標(biāo)參數(shù)估計(jì)
doi: 10.11999/JEIT200529 cstr: 32379.14.JEIT200529
-
1.
西安電子科技大學(xué)電子工程學(xué)院 西安 710071
-
2.
北京無線電測(cè)量研究所 北京 100854
-
3.
西安電子科技大學(xué)雷達(dá)信號(hào)處理國家重點(diǎn)實(shí)驗(yàn)室 西安 710071
High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Ransac Algorithm
-
1.
School of Electronic Engineering, Xidian University, Xi’an 710071, China
-
2.
Beijing Institute of Radio Measurement, Beijing 100854, China
-
3.
National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
摘要: 在現(xiàn)代雷達(dá)電子戰(zhàn)場(chǎng)中,目標(biāo)檢測(cè)與其參數(shù)估計(jì)有著非常重要的意義。因此,該文提出了一種基于隨機(jī)抽樣一致算法(Ransac)的捷變頻聯(lián)合正交頻分復(fù)用(FA-OFDM)雷達(dá)高速多目標(biāo)參數(shù)估計(jì)的方法。首先,在傳統(tǒng)捷變頻雷達(dá)的每個(gè)脈沖內(nèi)同時(shí)發(fā)射多個(gè)頻率隨機(jī)跳變的窄帶OFDM子載波。將單個(gè)脈沖內(nèi)所有子載波的回波信號(hào)進(jìn)行脈沖壓縮后,采用迭代自適應(yīng)譜估計(jì)(IAA)算法合成目標(biāo)的高分辨距離。然后,分別對(duì)各個(gè)脈沖的回波進(jìn)行脈沖壓縮和迭代自適應(yīng)譜估計(jì),得到不同脈沖時(shí)刻的高分辨距離,構(gòu)成觀測(cè)數(shù)據(jù)集。再根據(jù)Ransac算法估計(jì)信號(hào)參數(shù)模型的步驟,擬合多條時(shí)間-距離直線,進(jìn)而對(duì)高速運(yùn)動(dòng)的多個(gè)目標(biāo)同時(shí)進(jìn)行參數(shù)估計(jì)。最后,分別分析了信噪比(SNR)對(duì)檢測(cè)概率以及目標(biāo)自身速度對(duì)其相對(duì)估計(jì)誤差的影響。仿真實(shí)驗(yàn)驗(yàn)證了所提算法的有效性。
-
關(guān)鍵詞:
- 參數(shù)估計(jì) /
- 高速多目標(biāo) /
- 捷變頻聯(lián)合正交頻分復(fù)用雷達(dá) /
- 迭代自適應(yīng)譜估計(jì)算法 /
- 隨機(jī)抽樣一致算法
Abstract: In modern radar electronic battlefield, target detection and parameter estimation have great significance. Therefore, a high-speed multi-target parameter estimation method for Frequency Agile-Orthogonal Frequency Division Multiplexing (FA-OFDM) radar based on Random sampling consensus (Ransac) algorithm is proposed in this paper. Firstly, multiple narrowband OFDM subcarriers with random frequency hopping are simultaneously transmitted in each pulse of conventional frequency agile radar. The echo signals of all subcarriers in a single pulse are compressed, and then the high-resolution range of the target is synthesized by Iterative Adaptive Approach (IAA) algorithm. Furthermore, the echoes of each pulse are compressed and iterative adaptive spectrum estimated, and the high-resolution distance of different pulse time is obtained to form the observation data set. Then, according to the steps of the Ransac algorithm to estimate the signal parameter model, multiple time-distance lines are fitted, and then parameters of multiple high-speed moving targets are estimated at the same time. Finally, the influence of the Signal-to-Noise Ratio (SNR) on detection probability and the target velocity on relative error of estimation are analyzed, respectively. Simulations are provided to verify the effectiveness of the proposal. -
表 1 仿真參數(shù)
參數(shù) 數(shù)值 參數(shù) 數(shù)值 脈沖寬度 4 μs 脈沖重復(fù)頻率 25 kHz 信號(hào)帶寬 24 MHz 采樣頻率 48 MHz 子載波個(gè)數(shù) 64 中心載頻 14 GHz 跳頻總數(shù) 128 跳頻帶寬 20 MHz 脈沖總數(shù) 64 輸入信噪比 –12 dB / –28 dB 目標(biāo)距離 [3994, 4001, 4006] m 目標(biāo)速度 [600, 1220, 5800] m/s 下載: 導(dǎo)出CSV
-
[1] JANKIRAMAN M, WESSELS B J, and VAN GENDEREN P. Design of a multifrequency FMCW radar[C]. The 28th European Microwave Conference, Amsterdam, Netherlands, 1998: 548–589. doi: 10.1109/EUMA.1998.338053. [2] JANKIRAMAN M, WESSELS B J, and VAN GENDEREN P. Pandora multifrequency FMCW/SFCW radar[C].IEEE National Radar Conference, Alexandria, USA, 2000: 750–757. doi: 10.1109/RADAR.2000.851929. [3] 霍凱, 趙晶晶. OFDM新體制雷達(dá)研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 電子與信息學(xué)報(bào), 2015, 37(11): 2776–2785. doi: 10.11999/JEIT150335HUO Kai and ZHAO Jingjing. The Development and prospect of the new OFDM radar[J]. Jounal of Electronics &Information Technology, 2015, 37(11): 2776–2785. doi: 10.11999/JEIT150335 [4] WANG Jun, ZHANG Bochen, and LEI Peng. Ambiguity function analysis for OFDM radar signals[C]. CIE International Conference on Radar, Guangzhou, China, 2016: 10-13. doi: 10.1109/RADAR.2016.8059592. [5] 肖博, 霍凱, 劉永祥. 雷達(dá)通信一體化研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 電子與信息學(xué)報(bào), 2019, 41(3): 739–749. doi: 10.11999/JEIT180515XIAO Bo, HUO Kai, and LIU Yongxiang. Development and Prospect of Radar and Communication Integration[J]. Jounal of Electronics &Information Technology, 2019, 41(3): 739–749. doi: 10.11999/JEIT180515 [6] 劉冰凡, 陳伯孝. 基于OFDM-LFM信號(hào)的MIMO雷達(dá)通信一體化信號(hào)共享設(shè)計(jì)研究[J]. 電子與信息學(xué)報(bào), 2019, 41(4): 801–808. doi: 10.11999/JEIT180547LIU Bingfan and CHEN Baixiao. Integration of MIMO Radar and Communication with OFDM-LFM Signals[J]. Jounal of Electronics &Information Technology, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547 [7] SCHWEIZER B, SCHINDLER D, KNILL C, et al. Expanding the unambiguous velocity limitation of the stepped-carrier OFDM radar scheme[C]. The 15th European Radar Conference, Madrid, Spanish, 2018: 26–28. doi: 10.23919/EuRAD.2018.8546621. [8] SCHWEIZER B, KNILL C, SCHINDLER D et al. Stepped-Carrier OFDM-Radar processing scheme to retrieve high-resolution range-velocity profile at low sampling rate[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3): 1610–1618. doi: 10.1109/TMTT.2017.2751463 [9] LELLOUCH G, TRAN P, PRIBIC R, et al. OFDM waveforms for frequency agility and opportunities for Doppler processing in radar[C]. IEEE Radar Conference, Rome, Italy, 2008: 1–6. doi: 10.1109/RADAR.2008.4720798. [10] HUO Kai, DENG B, LIU Y, et al. The principle of synthesizing HRRP based on a new OFDM phase-coded stepped-frequency radar signal[C]. IEEE 10th International Conference On Signal Processing Proceedings, Beijing, China, 2010: 1994–1998. doi: 10.1109/ICOSP.2010.5655889. [11] LELLOUCH G, PRIBIC R and VAN GENDEREN P. Frequency agile stepped OFDM waveform for HRR[C]. 2009 International Waveform Diversity and Design Conference, Kissimmee, USA, 2009: 90–93. doi: 10.1109/WDDC.2009.4800321. [12] 黃瑞, 杜小勇, 胡衛(wèi)東. OFDM雷達(dá)多目標(biāo)運(yùn)動(dòng)參數(shù)的近似最大似然估計(jì)[J]. 雷達(dá)學(xué)報(bào), 2018, 7(4): 507–513. doi: 10.12000/JR17116HUANG Rui, DU Xiaoyong and HU Weidong. Approximate maximum likelihood estimator of multi-target motion parameters for orthogonal frequency division multiplexing radar[J]. Journal Of Radars, 2018, 7(4): 507–513. doi: 10.12000/JR17116 [13] 全英匯, 高霞, 沙明輝, 等. 基于期望最大化算法的捷變頻聯(lián)合正交頻分復(fù)用雷達(dá)高速多目標(biāo)參數(shù)估計(jì)[J]. 電子與信息學(xué)報(bào), 2018, 7(4): 507–513. doi: 10.11999/JEIT190474QUAN Yinghui, GAO Xia, SHA Minghui, et al. High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Expectation Maximization Algorithm[J]. Jounal of Electronics &Information Technology, 2018, 7(4): 507–513. doi: 10.11999/JEIT190474 [14] QUAN Yinghui, LI Yachao, WU Yaojun, et al. Moving target detection for frequency agility radar by sparse reconstruction[J]. Rev. Sci. Instrum., 2016, 87(9): 811–815. doi: 10.1049/el.2011.1293 [15] QUAN Yinghui, WU Yaojun, LI Yachao, et al. Range–Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 348–352. doi: 10.1049/iet-rsn.2017.0421 [16] 章平亮. 自適應(yīng)迭代譜估計(jì)的統(tǒng)一分析與拓展[D]. 復(fù)旦大學(xué). 2013: 9–20.ZHANG Pingliang. Unified analysis and development of adaptive iterative spectrum estimation[D]. Fudan University. 2013: 9–20. [17] JENSEN J R, GLENTIS G O, CHRISTENSEN M G, et al. Computationally efficient IAA-based estimation of the fundamental frequency[C]. 2012 Proceedings of the 20th European Signal Processing Conference(EUSIPCO), Bucharest, Romania, 2012. [18] GLENTIS G O and JAKOBSSON A. Efficient implementation of iterative adaptive approach spectral estimation techniques[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 4154–4167. doi: 10.1109/TSP.2011.2145376 [19] XUE Ming, XU Luzhou, and LI Jian. IAA Spectral Estimation: Fast implementation using the Gohberg-Semencul factorization[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3251–3261. doi: 10.1109/ICASSP.2011.5947305 [20] ZHAO Mingfu, CHEN Haijun, SONG Tao, et al. Research on image matching based on improved RANSAC-SIFT algorithm[C]. 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 2017: 1–3. doi: 10.1109/ICOCN.2017.8121270. [21] RAZA M A, AWAIS REHMAN M, QURESHI I M, et al. Mahmood. A Simplified approach to Visual Odometry using Graph Cut RANSAC[C]. 2018 5th International Multi-Topic ICT Conference (IMTIC), Jamshoro, 2018: 1–7. doi: 10.1109/IMTIC.2018.8467263. -