一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于中值的JS散度可變剪接差異分析研究

劉文斌 王兵 方剛 石曉龍 許鵬

劉文斌, 王兵, 方剛, 石曉龍, 許鵬. 基于中值的JS散度可變剪接差異分析研究[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1392-1400. doi: 10.11999/JEIT190941
引用本文: 劉文斌, 王兵, 方剛, 石曉龍, 許鵬. 基于中值的JS散度可變剪接差異分析研究[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1392-1400. doi: 10.11999/JEIT190941
Wenbin LIU, Bing WANG, Gang FANG, Xiaolong SHI, Peng XU. Study on the Differential Analysis of Alternative Splicing Based on the Median Value Jensen-Shannon Divergence[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1392-1400. doi: 10.11999/JEIT190941
Citation: Wenbin LIU, Bing WANG, Gang FANG, Xiaolong SHI, Peng XU. Study on the Differential Analysis of Alternative Splicing Based on the Median Value Jensen-Shannon Divergence[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1392-1400. doi: 10.11999/JEIT190941

基于中值的JS散度可變剪接差異分析研究

doi: 10.11999/JEIT190941 cstr: 32379.14.JEIT190941
基金項(xiàng)目: 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2019YFA0706402),國(guó)家自然科學(xué)基金(61572367, 61573017, 61972107, 61972109)
詳細(xì)信息
    作者簡(jiǎn)介:

    劉文斌:男,1969年生,教授,研究方向?yàn)樯镄畔W(xué)

    王兵:男,1993年生,碩士生,研究方向?yàn)樯镄畔W(xué)

    方剛:男,1969年生,教授,研究方向?yàn)樯镄畔W(xué)

    石曉龍:男,1975年生,教授,研究方向?yàn)樯镄畔W(xué)

    許鵬:男,1986年生,博士后,研究方向?yàn)樯镄畔W(xué)

    通訊作者:

    劉文斌 wbliu6910@126.com

  • 中圖分類號(hào): TP391

Study on the Differential Analysis of Alternative Splicing Based on the Median Value Jensen-Shannon Divergence

Funds: The National Key R&D Program of China (2019YFA0706402), The National Natural Science Foundation of China (61572367, 61573017, 61972107, 61972109)
  • 摘要: 可變剪接是一種廣泛存在于生物體中造成蛋白質(zhì)多樣性的重要機(jī)制,它對(duì)細(xì)胞的增殖、分化、發(fā)育、凋亡等一系列重要的生物過(guò)程具有重要精細(xì)調(diào)控的作用。近年來(lái),人們發(fā)現(xiàn)多種復(fù)雜疾病的產(chǎn)生往往伴隨著剪接異構(gòu)體的紊亂表達(dá)。為了研究剪接異構(gòu)體在整體分布上的差異,該文提出一種基于中值的JS散度可變剪接(AS)差異分析方法。結(jié)果表明,該文的方法能夠發(fā)現(xiàn)大量在剪接異構(gòu)體整體分布上具有顯著差異的基因。這些基因不僅富集在一些癌癥密切相關(guān)的通路,而且也富集在一些基于可變剪接調(diào)控的信號(hào)通路、細(xì)胞分裂過(guò)程和蛋白質(zhì)功能等通路。此外,與基因?qū)哟蔚牟町惙治鱿啾?,可變剪接顯著差異的基因在生存分析方面也具有更好的性能??傊?,該文提出基于中值的JS散度可變剪接差異分析方法,將為進(jìn)一步揭示可變剪接在癌癥中的機(jī)制奠定基礎(chǔ)。
  • 圖  1  4種方法差異基因的韋恩圖

    圖  2  乳腺癌驅(qū)動(dòng)基因的PPI網(wǎng)絡(luò)

    圖  3  癌癥分類結(jié)果比較

    圖  4  差異基因生存分析曲線

    表  1  癌癥數(shù)據(jù)集統(tǒng)計(jì)信息

    癌癥癌癥樣本正常樣本基因個(gè)數(shù)異構(gòu)體個(gè)數(shù)
    BRCA11001121017833481
    LIHC37350887126234
    UCEC11724976530953
    下載: 導(dǎo)出CSV

    表  2  KEGG通路分析

    癌癥通路(Gen Model)通路(AS Model)
    Focal adhesionCell cycle
    PI3K-Akt signaling pathwayp53 signaling pathway
    Tight junctionPathways in cancer
    Regulation of lipolysis in adipocytesOocyte meiosis
    BRCAPathways in cancerViral carcinogenesis
    Rap1 signaling pathwayAdherens junction
    cAMP signaling pathwayPurine metabolism
    ABC transportersPI3K-Akt signaling pathway
    Cell adhesion molecules (CAMs)Hippo signaling pathway
    Leukocyte transendothelial migrationMetabolic pathways
    Metabolic pathwaysMetabolic pathways
    Fatty acid degradationPhagosome
    Protein processing in endoplasmic reticulumFc gamma R-mediated phagocytosis
    ProteasomeLeishmaniasis
    LIHCmTOR signaling pathwayHomologous recombination
    AMPK signaling pathwaySphingolipid metabolism
    Valine, leucine and isoleucine degradationECM-receptor interaction
    SpliceosomeCell cycle
    Ubiquitin mediated proteolysisFanconi anemia pathway
    Insulin signaling pathwayRibosome biogenesis in eukaryotes
    Vascular smooth muscle contractionOsteoclast differentiation
    cGMP-PKG signaling pathwayCell cycle
    Focal adhesionAdherens junction
    MAPK signaling pathwayAxon guidance
    UCECProteoglycans in cancerPhagosome
    Calcium signaling pathwayRheumatoid arthritis
    Platelet activationAMPK signaling pathway
    Adherens junctionPPAR signaling pathway
    Oxytocin signaling pathwayECM-receptor interaction
    Ras signaling pathwayPlatelet activation
    下載: 導(dǎo)出CSV
  • WANG E T, SANDBERG R, LUO Shujun, et al. Alternative isoform regulation in human tissue transcriptomes[J]. Nature, 2008, 456(7221): 470–476. doi: 10.1038/nature07509
    ZHOU Yujie, ZHU Guiqi, ZHANG Qingwei, et al. Survival-associated alternative messenger RNA splicing signatures in pancreatic ductal adenocarcinoma: A study based on RNA-sequencing data[J]. DNA and Cell Biology, 2019, 38(11): 1207–1222. doi: 10.1089/dna.2019.4862
    XIE Zucheng, WU Huayu, DANG Yiwu, et al. Role of alternative splicing signatures in the prognosis of glioblastoma[J]. Cancer Medicine, 2019, 8(18): 7623–7636. doi: 10.1002/cam4.2666
    LI Mingxue, WANG Dun, HE Jianhua, et al. Bcl-XL: A multifunctional anti-apoptotic protein[J]. Pharmacological Research, 2020, 151: 104547. doi: 10.1016/j.phrs.2019.104547
    KOLE R, KRAINER A R, and ALTMAN S. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides[J]. Nature Reviews Drug Discovery, 2012, 11(2): 125–140. doi: 10.1038/nrd3625
    SONG Jukun, LIU Yongda, SU Jiaming, et al. Systematic analysis of alternative splicing signature unveils prognostic predictor for kidney renal clear cell carcinoma[J]. Journal of Cellular Physiology, 2019, 234(12): 22753–22764. doi: 10.1002/jcp.28840
    DOU Tonghai, XU Jiaxi, GAO Yuan, et al. Evolution of peroxisome proliferator-activated receptor gamma alternative splicing[J]. Frontiers in Bioscience (Elite Edition) , 2010, 2: 1334–1343. doi: 10.2741/e193
    LI Ji, CHOI P S, CHAFFER C L, et al. An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer[J]. eLife, 2018, 7: e37184. doi: 10.7554/eLife.37184
    SHEN Shihao, PARK J W, LU Zhixiang, et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51): E5593–E5601. doi: 10.1073/pnas.1419161111
    歐書(shū)華, 劉學(xué)軍, 張禮. 基于KL散度的RNA-Seq數(shù)據(jù)差異異構(gòu)體比例檢測(cè)[J]. 計(jì)算機(jī)工程與科學(xué), 2017, 39(1): 158–164. doi: 10.3969/j.issn.1007-130X.2017.01.022

    OU Shuhua, LIU Xuejun, and ZHANG Li. Differential isoform ratio detection based on KL divergence for RNA-Seq data[J]. Computer Engineering &Science, 2017, 39(1): 158–164. doi: 10.3969/j.issn.1007-130X.2017.01.022
    LIU Jingwei, LI Hao, SHEN Shixuan, et al. Alternative splicing events implicated in carcinogenesis and prognosis of colorectal cancer[J]. Journal of Cancer, 2018, 9(10): 1754–1764. doi: 10.7150/jca.24569
    ZONG Zhen, LI Hui, YI Chenghao, et al. Genome-wide profiling of prognostic alternative splicing signature in colorectal cancer[J]. Frontiers in Oncology, 2018, 8: 537. doi: 10.3389/fonc.2018.00537
    ZHANG Zijun, PAN Zhicheng, YING Yi, et al. Deep-learning augmented RNA-seq analysis of transcript splicing[J]. Nature Methods, 2019, 16(4): 307–310. doi: 10.1038/s41592-019-0351-9
    WHITFIELD M L, GEORGE L K, GRANT G D, et al. Common markers of proliferation[J]. Nature Reviews Cancer, 2006, 6(2): 99–106. doi: 10.1038/nrc1802
    INOUE K and FRY E A. Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer[J]. International Journal of Cancer, 2016, 139(1): 33–41. doi: 10.1002/ijc.30003
    MUNDING E M, SHIUE L, KATZMAN S, et al. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing[J]. Molecular Cell, 2013, 51(3): 338–348. doi: 10.1016/j.molcel.2013.06.012
    CHU Xiufeng, ZHANG Ting, WANG Jie, et al. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer[J]. Biochemical and Biophysical Research Communications, 2014, 447(1): 158–164. doi: 10.1016/j.bbrc.2014.03.129
    BAILEY M H, TOKHEIM C, PORTA-PARDO E, et al. Comprehensive characterization of cancer driver genes and mutations[J]. Cell, 2018, 173(2): 371–385. e18. doi: 10.1016/j.cell.2018.02.060
    曾勇, 舒歡, 胡江平, 等. 基于BP神經(jīng)網(wǎng)絡(luò)的自適應(yīng)偽最近鄰分類[J]. 電子與信息學(xué)報(bào), 2016, 38(11): 2774–2779. doi: 10.11999/JEIT160133

    ZENG Yong, SHU Huan, HU Jiangping, et al. Adaptive pseudo nearest neighbor classification based on BP neural network[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2774–2779. doi: 10.11999/JEIT160133
    陳素根, 吳小俊. 基于特征值分解的中心支持向量機(jī)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 557–564. doi: 10.11999/JEIT150693

    CHEN Sugen and WU Xiaojun. Eigenvalue proximal support vector machine algorithm based on eigenvalue decoposition[J]. Journal of Electronics &Information Technology, 2016, 38(3): 557–564. doi: 10.11999/JEIT150693
    ZHANG Yangjun, YAN Libin, ZENG Jin, et al. Pan-cancer analysis of clinical relevance of alternative splicing events in 31 human cancers[J]. Oncogene, 2019, 38(40): 6678–6695. doi: 10.1038/s41388-019-0910-7
  • 加載中
圖(4) / 表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  1975
  • HTML全文瀏覽量:  699
  • PDF下載量:  72
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-11-22
  • 修回日期:  2020-04-24
  • 網(wǎng)絡(luò)出版日期:  2020-05-13
  • 刊出日期:  2020-06-22

目錄

    /

    返回文章
    返回