基于可變剪接紊亂的乳腺癌亞型預測分析
doi: 10.11999/JEIT190871 cstr: 32379.14.JEIT190871
-
1.
廣州大學計算科技研究院 廣州 510006
-
2.
溫州大學計算機與人工智能學院 溫州 325035
-
3.
黔南民族師范學院計算機與信息學院 都勻 558000
Analysis of Breast Cancer Subtypes Prediction Based on Alternative Splicing Disorders
-
1.
Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
-
2.
College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
-
3.
School of Computer Science and Information Technology, Qiannan Normal University for Nationalities, Duyun 558000, China
-
摘要: 可變剪接與多種復雜疾病的發(fā)生、發(fā)展存在密切的聯(lián)系,包括腫瘤在內的多種疾病的產生往往伴隨著可變剪接的紊亂發(fā)生?,F(xiàn)有的乳腺癌亞型分析主要是基于單個剪接異構體出發(fā),缺少考慮亞型之間由于可變剪接紊亂造成剪接異構體在整體分布上的差異。因此該文提出了基于可變剪接紊亂的乳腺癌亞型預測方法,主要使用Jensen-Shannon(JS)散度來找尋亞型之間的可變剪接紊亂差異較大的基因,并構建反向傳播(BP)神經網絡模型對乳腺癌亞型進行分類。結果表明,該方法不僅能有效發(fā)現(xiàn)腫瘤異質性分子,在乳腺癌亞型分類方面也有較好的識別結果,其平均F1值達到0.89,且能為患者提供個性化乳腺癌亞型藥物推薦。該文的研究將有效促進基于可變剪接紊亂的乳腺癌亞型研究的發(fā)展。
-
關鍵詞:
- 乳腺癌亞型預測 /
- 可變剪接 /
- Jensen-Shannon散度 /
- 反向傳播神經網絡 /
- 藥物推薦
Abstract: Alternative splicing is closely related to the occurrence and development of a variety of complex diseases, the emergence of various diseases including tumors is often accompanied by the occurrence of alternative splicing disorders. The existing analysis of breast cancer subtypes is mainly based on single splicing isoform, and the difference in the overall distribution of splicing isoforms caused by alternative splicing disorders among subtypes is not considered. Therefore, a prediction method of breast cancer subtypes based on alternative splicing disorders is proposed, which mainly uses Jensen-Shannon(JS) divergence to find genes with large differences in alternative splicing disorders between subtypes, then constructes Back Propagation(BP) neural network model to classify breast cancer subtypes. The results show that this method could not only effectively detect tumor heterogeneous molecules, but also had good identification results in the classification of breast cancer subtypes, with an average F1-score of 0.89, and could provide personalized drug recommendations for patients with breast cancer subtypes. This study will effectively promote the development of breast cancer subtypes based on alternative splicing disorders. -
表 2 乳腺癌亞型分類
乳腺癌亞型 精確率 召回率 F1值 Basal 0.97 0.96 0.97 Her2 0.85 0.75 0.79 LumA 0.89 0.92 0.91 LumB 0.81 0.79 0.80 Normal 0.89 0.91 0.90 下載: 導出CSV
表 3 乳腺癌亞型的藥物推薦
靶基因 藥物 Basal Her2 LumA LumB CHEK1 Enzastaurin 0.393 0.369 0.195 0.316 ESR1 Melatonin,Homosalate,Estradiol,2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine,Danazol,Fulvestrant,Raloxifene,Custirsen,Tamoxifen,Estrone sulfate,Methyltestosterone,Fluoxymesterone,Afimoxifene 0.305 0.133 0.028 0.025 FOLR2 Folic acid,Methotrexate 0.842 0.025 0.108 0.354 GPER1 Estradiol 0.442 0.438 0.021 0.013 GSN Latrunculin A 0.443 0.419 0.224 0.476 PPARG Curcumin,Isoflavone,Valproic acid,Mesalazine,Nabiximols,Cannabidiol 0.668 0.645 0.030 0.637 AURKB Enzastaurin,AT9283 0.640 0.569 0.352 0.591 ABCC11 Methotrexate,Folic acid 0.431 0.036 0.013 0.040 下載: 導出CSV
-
ULE J and BLENCOWE B J. Alternative splicing regulatory networks: Functions, mechanisms, and evolution[J]. Molecular Cell, 2019, 76(2): 329–345. doi: 10.1016/j.molcel.2019.09.017 PAN Qun, SHAI O, LEE L J, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing[J]. Nature Genetics, 2008, 40(12): 1413–1415. doi: 10.1038/ng.259 HIRSCH C L, AKDEMIR Z C, WANG Li, et al. Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming[J]. Genes & Development, 2015, 29(8): 803–816. doi: 10.1101/gad.255109.114 VENABLES J P. Aberrant and alternative splicing in cancer[J]. Cancer Research, 2004, 64(21): 7647–7654. doi: 10.1158/0008-5472.CAN-04-1910 NARYSHKIN N A, WEETALL M, DAKKA A, et al. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy[J]. Science, 2014, 345(6197): 688–693. doi: 10.1126/science.1250127 GILLINGS A S, BALMANNO K, WIGGINS C M, et al. Apoptosis and autophagy: BIM as a mediator of tumour cell death in response to oncogene-targeted therapeutics[J]. The FEBS Journal, 2009, 276(21): 6050–6062. doi: 10.1111/j.1742-4658.2009.07329.x MENON R and OMENN G S. Proteomic characterization of novel alternative splice variant proteins in human epidermal growth factor receptor 2/neu-induced breast cancers[J]. Cancer Research, 2010, 70(9): 3440–3449. doi: 10.1158/0008-5472.CAN-09-2631 DAVID C J and MANLEY J L. Alternative pre-mRNA splicing regulation in cancer: Pathways and programs unhinged[J]. Genes & Development, 2010, 24(21): 2343–2364. doi: 10.1101/gad.1973010 BLACK D L. Mechanisms of alternative pre-messenger RNA splicing[J]. Annual Review of Biochemistry, 2003, 72: 291–336. doi: 10.1146/annurev.biochem.72.121801.161720 ALMENDRO V, MARUSYK A, and POLYAK K. Cellular heterogeneity and molecular evolution in cancer[J]. Annual Review of Pathology: Mechanisms of Disease, 2013, 8: 277–302. doi: 10.1146/annurev-pathol-020712-163923 PAL S, BI Yingtao, MACYSZYN L, et al. Isoform-level gene signature improves prognostic stratification and accurately classifies glioblastoma subtypes[J]. Nucleic Acids Research, 2014, 42(8): e64. doi: 10.1093/nar/gku121 PEROU C M, S?RLIE T, EISEN M B, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797): 747–752. doi: 10.1038/35021093 ZHAO Wei, HOADLEY K A, PARKER J S, et al. Identification of mRNA isoform switching in breast cancer[J]. BMC Genomics, 2016, 17: 181. doi: 10.1186/s12864-016-2521-9 S?RLIE T, TIBSHIRANI R, PARKER J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8418–8423. doi: 10.1073/pnas.0932692100 STRICKER T P, BROWN C D, BANDLAMUDI C, et al. Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression[J]. PLoS Genetics, 2017, 13(3): e1006589. doi: 10.1371/journal.pgen.1006589 曾勇, 舒歡, 胡江平, 等. 基于BP神經網絡的自適應偽最近鄰分類[J]. 電子與信息學報, 2016, 38(11): 2774–2779. doi: 10.11999/JEIT160133ZENG Yong, SHU Huan, HU Jiangping, et al. Adaptive pseudo nearest neighbor classification based on BP neural network[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2774–2779. doi: 10.11999/JEIT160133 AKRAM M, IQBAL M, DANIYAL M, et al. Awareness and current knowledge of breast cancer[J]. Biological Research, 2017, 50: 33. doi: 10.1186/s40659-017-0140-9 劉文斌, 陳杰, 方剛, 等. 基于藥物互作網絡的協(xié)同與拮抗預測研究[J]. 電子與信息學報, 2020, 42(6): 1428–1435. doi: 10.11999/JEIT190867LIU Wenbin, CHEN Jie, FANG Gang, et al. Prediction of drug synergy and antagonism based on drug-drug interaction network[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1428–1435. doi: 10.11999/JEIT190867 CALIFANO A and ALVAREZ M J. The recurrent architecture of tumour initiation, progression and drug sensitivity[J]. Nature Reviews Cancer, 2017, 17(2): 116–130. doi: 10.1038/nrc.2016.124 KIMURA S. AT-9283, a small-molecule multi-targeted kinase inhibitor for the potential treatment of cancer[J]. Current Opinion in Investigational Drugs, 2010, 11(12): 1442–1449. ZHOU Donghu, JIANG Ying, and HE Fuchu. Alternative splicing in lifeomics era[J]. Scientia Sinica Vitae, 2015, 45(12): 1177–1184. doi: 10.1360/N052015-00135 -