一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于可變剪接紊亂的乳腺癌亞型預測分析

許鵬 王兵 方剛 石曉龍 劉文斌

許鵬, 王兵, 方剛, 石曉龍, 劉文斌. 基于可變剪接紊亂的乳腺癌亞型預測分析[J]. 電子與信息學報, 2020, 42(6): 1348-1354. doi: 10.11999/JEIT190871
引用本文: 許鵬, 王兵, 方剛, 石曉龍, 劉文斌. 基于可變剪接紊亂的乳腺癌亞型預測分析[J]. 電子與信息學報, 2020, 42(6): 1348-1354. doi: 10.11999/JEIT190871
Peng XU, Bing WANG, Gang FANG, Xiaolong SHI, Wenbin LIU. Analysis of Breast Cancer Subtypes Prediction Based on Alternative Splicing Disorders[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1348-1354. doi: 10.11999/JEIT190871
Citation: Peng XU, Bing WANG, Gang FANG, Xiaolong SHI, Wenbin LIU. Analysis of Breast Cancer Subtypes Prediction Based on Alternative Splicing Disorders[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1348-1354. doi: 10.11999/JEIT190871

基于可變剪接紊亂的乳腺癌亞型預測分析

doi: 10.11999/JEIT190871 cstr: 32379.14.JEIT190871
基金項目: 國家重點研發(fā)計劃(2019YFA0706402),國家自然科學基金(61572367, 61573017, 61972107, 61972109)
詳細信息
    作者簡介:

    許鵬:男,1986年生,博士后,研究方向為生物信息學

    王兵:男,1993年生,碩士生,研究方向為生物信息學

    方剛:男,1969年生,教授,研究方向為生物信息學

    石曉龍:男,1975年生,教授,研究方向為生物信息學

    劉文斌:男,1969年生,教授,研究方向為生物信息學

    通訊作者:

    劉文斌 wbliu6910@126.com

  • 中圖分類號: TP391

Analysis of Breast Cancer Subtypes Prediction Based on Alternative Splicing Disorders

Funds: The National Key R&D Program of China (2019YFA0706402), The National Natural Science Foundation of China (61572367, 61573017, 61972107, 61972109)
  • 摘要: 可變剪接與多種復雜疾病的發(fā)生、發(fā)展存在密切的聯(lián)系,包括腫瘤在內的多種疾病的產生往往伴隨著可變剪接的紊亂發(fā)生?,F(xiàn)有的乳腺癌亞型分析主要是基于單個剪接異構體出發(fā),缺少考慮亞型之間由于可變剪接紊亂造成剪接異構體在整體分布上的差異。因此該文提出了基于可變剪接紊亂的乳腺癌亞型預測方法,主要使用Jensen-Shannon(JS)散度來找尋亞型之間的可變剪接紊亂差異較大的基因,并構建反向傳播(BP)神經網絡模型對乳腺癌亞型進行分類。結果表明,該方法不僅能有效發(fā)現(xiàn)腫瘤異質性分子,在乳腺癌亞型分類方面也有較好的識別結果,其平均F1值達到0.89,且能為患者提供個性化乳腺癌亞型藥物推薦。該文的研究將有效促進基于可變剪接紊亂的乳腺癌亞型研究的發(fā)展。
  • 圖  1  排名靠前100基因的JS散度分布情況

    圖  2  不同乳腺癌亞型與正常型之間差異基因的韋恩圖

    圖  3  JS散度大于0.3的基因個數

    圖  4  乳腺癌亞型聚類

    圖  5  乳腺癌亞型分類結果

    表  1  不同乳腺癌亞型的樣本數

    乳腺癌亞型樣本數
    Basal140
    Her267
    LumA432
    LumB194
    Normal117
    下載: 導出CSV

    表  2  乳腺癌亞型分類

    乳腺癌亞型精確率召回率F1值
    Basal0.970.960.97
    Her20.850.750.79
    LumA0.890.920.91
    LumB0.810.790.80
    Normal0.890.910.90
    下載: 導出CSV

    表  3  乳腺癌亞型的藥物推薦

    靶基因藥物BasalHer2LumALumB
    CHEK1Enzastaurin0.3930.3690.1950.316
    ESR1Melatonin,Homosalate,Estradiol,2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine,Danazol,Fulvestrant,Raloxifene,Custirsen,Tamoxifen,Estrone sulfate,Methyltestosterone,Fluoxymesterone,Afimoxifene0.3050.1330.0280.025
    FOLR2Folic acid,Methotrexate0.8420.0250.1080.354
    GPER1Estradiol0.4420.4380.0210.013
    GSNLatrunculin A0.4430.4190.2240.476
    PPARGCurcumin,Isoflavone,Valproic acid,Mesalazine,Nabiximols,Cannabidiol0.6680.6450.0300.637
    AURKBEnzastaurin,AT92830.6400.5690.3520.591
    ABCC11Methotrexate,Folic acid0.4310.0360.0130.040
    下載: 導出CSV
  • ULE J and BLENCOWE B J. Alternative splicing regulatory networks: Functions, mechanisms, and evolution[J]. Molecular Cell, 2019, 76(2): 329–345. doi: 10.1016/j.molcel.2019.09.017
    PAN Qun, SHAI O, LEE L J, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing[J]. Nature Genetics, 2008, 40(12): 1413–1415. doi: 10.1038/ng.259
    HIRSCH C L, AKDEMIR Z C, WANG Li, et al. Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming[J]. Genes & Development, 2015, 29(8): 803–816. doi: 10.1101/gad.255109.114
    VENABLES J P. Aberrant and alternative splicing in cancer[J]. Cancer Research, 2004, 64(21): 7647–7654. doi: 10.1158/0008-5472.CAN-04-1910
    NARYSHKIN N A, WEETALL M, DAKKA A, et al. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy[J]. Science, 2014, 345(6197): 688–693. doi: 10.1126/science.1250127
    GILLINGS A S, BALMANNO K, WIGGINS C M, et al. Apoptosis and autophagy: BIM as a mediator of tumour cell death in response to oncogene-targeted therapeutics[J]. The FEBS Journal, 2009, 276(21): 6050–6062. doi: 10.1111/j.1742-4658.2009.07329.x
    MENON R and OMENN G S. Proteomic characterization of novel alternative splice variant proteins in human epidermal growth factor receptor 2/neu-induced breast cancers[J]. Cancer Research, 2010, 70(9): 3440–3449. doi: 10.1158/0008-5472.CAN-09-2631
    DAVID C J and MANLEY J L. Alternative pre-mRNA splicing regulation in cancer: Pathways and programs unhinged[J]. Genes & Development, 2010, 24(21): 2343–2364. doi: 10.1101/gad.1973010
    BLACK D L. Mechanisms of alternative pre-messenger RNA splicing[J]. Annual Review of Biochemistry, 2003, 72: 291–336. doi: 10.1146/annurev.biochem.72.121801.161720
    ALMENDRO V, MARUSYK A, and POLYAK K. Cellular heterogeneity and molecular evolution in cancer[J]. Annual Review of Pathology: Mechanisms of Disease, 2013, 8: 277–302. doi: 10.1146/annurev-pathol-020712-163923
    PAL S, BI Yingtao, MACYSZYN L, et al. Isoform-level gene signature improves prognostic stratification and accurately classifies glioblastoma subtypes[J]. Nucleic Acids Research, 2014, 42(8): e64. doi: 10.1093/nar/gku121
    PEROU C M, S?RLIE T, EISEN M B, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797): 747–752. doi: 10.1038/35021093
    ZHAO Wei, HOADLEY K A, PARKER J S, et al. Identification of mRNA isoform switching in breast cancer[J]. BMC Genomics, 2016, 17: 181. doi: 10.1186/s12864-016-2521-9
    S?RLIE T, TIBSHIRANI R, PARKER J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8418–8423. doi: 10.1073/pnas.0932692100
    STRICKER T P, BROWN C D, BANDLAMUDI C, et al. Robust stratification of breast cancer subtypes using differential patterns of transcript isoform expression[J]. PLoS Genetics, 2017, 13(3): e1006589. doi: 10.1371/journal.pgen.1006589
    曾勇, 舒歡, 胡江平, 等. 基于BP神經網絡的自適應偽最近鄰分類[J]. 電子與信息學報, 2016, 38(11): 2774–2779. doi: 10.11999/JEIT160133

    ZENG Yong, SHU Huan, HU Jiangping, et al. Adaptive pseudo nearest neighbor classification based on BP neural network[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2774–2779. doi: 10.11999/JEIT160133
    AKRAM M, IQBAL M, DANIYAL M, et al. Awareness and current knowledge of breast cancer[J]. Biological Research, 2017, 50: 33. doi: 10.1186/s40659-017-0140-9
    劉文斌, 陳杰, 方剛, 等. 基于藥物互作網絡的協(xié)同與拮抗預測研究[J]. 電子與信息學報, 2020, 42(6): 1428–1435. doi: 10.11999/JEIT190867

    LIU Wenbin, CHEN Jie, FANG Gang, et al. Prediction of drug synergy and antagonism based on drug-drug interaction network[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1428–1435. doi: 10.11999/JEIT190867
    CALIFANO A and ALVAREZ M J. The recurrent architecture of tumour initiation, progression and drug sensitivity[J]. Nature Reviews Cancer, 2017, 17(2): 116–130. doi: 10.1038/nrc.2016.124
    KIMURA S. AT-9283, a small-molecule multi-targeted kinase inhibitor for the potential treatment of cancer[J]. Current Opinion in Investigational Drugs, 2010, 11(12): 1442–1449.
    ZHOU Donghu, JIANG Ying, and HE Fuchu. Alternative splicing in lifeomics era[J]. Scientia Sinica Vitae, 2015, 45(12): 1177–1184. doi: 10.1360/N052015-00135
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數:  1785
  • HTML全文瀏覽量:  595
  • PDF下載量:  72
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-11-01
  • 修回日期:  2020-05-10
  • 網絡出版日期:  2020-05-23
  • 刊出日期:  2020-06-22

目錄

    /

    返回文章
    返回