一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于多目標(biāo)進(jìn)化策略算法的DNA核酸編碼設(shè)計

張凱 陳彬 許志偉

張凱, 陳彬, 許志偉. 基于多目標(biāo)進(jìn)化策略算法的DNA核酸編碼設(shè)計[J]. 電子與信息學(xué)報, 2020, 42(6): 1365-1373. doi: 10.11999/JEIT190869
引用本文: 張凱, 陳彬, 許志偉. 基于多目標(biāo)進(jìn)化策略算法的DNA核酸編碼設(shè)計[J]. 電子與信息學(xué)報, 2020, 42(6): 1365-1373. doi: 10.11999/JEIT190869
Kai ZHANG, Bin Chen, Zhiwei Xu. A Multiobjective Evolution Strategy Algorithm for DNA Sequence Design[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1365-1373. doi: 10.11999/JEIT190869
Citation: Kai ZHANG, Bin Chen, Zhiwei Xu. A Multiobjective Evolution Strategy Algorithm for DNA Sequence Design[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1365-1373. doi: 10.11999/JEIT190869

基于多目標(biāo)進(jìn)化策略算法的DNA核酸編碼設(shè)計

doi: 10.11999/JEIT190869 cstr: 32379.14.JEIT190869
基金項目: 國家自然科學(xué)基金(61472293, 61702383, 61602328)
詳細(xì)信息
    作者簡介:

    張凱:男,1979年生,教授,研究方向為DNA計算、多目標(biāo)進(jìn)化算法

    陳彬:男,1982年生,碩士生,研究方向為智能優(yōu)化算法

    許志偉:男,1995年生,博士生,研究方向為DNA編碼、演化計算

    通訊作者:

    許志偉 xuzhiwei@wust.edu.cn

  • 中圖分類號: TP301

A Multiobjective Evolution Strategy Algorithm for DNA Sequence Design

Funds: The National Natural Science Foundation of China (61472293, 61702383, 61602328)
  • 摘要: 設(shè)計高質(zhì)量的核酸分子集合能有效提高DNA計算的可靠性、有效性和可求解問題的規(guī)模。DNA分子需要滿足熱力學(xué)約束、相似度約束、GC含量約束等多個相互沖突的目標(biāo)函數(shù),是典型的多目標(biāo)優(yōu)化問題。該文提出一種多目標(biāo)進(jìn)化策略(MOES)算法求解DNA分子序列設(shè)計問題,算法設(shè)計了隨機(jī)堿基變異算子實現(xiàn)高效的局部搜索和全局搜索。改進(jìn)的評價函數(shù)綜合考慮了候選解的支配關(guān)系和沖突目標(biāo)的平衡程度,選取符合DNA編碼約束的核酸序列。實驗結(jié)果證明,該文提出的算法具有高效的搜索效率和快速收斂能力,可以產(chǎn)生高質(zhì)量的DNA序列集合,優(yōu)于其他對比算法產(chǎn)生的DNA分子序列集合。
  • 圖  1  非支配解集中的邊界點和理想解

    圖  2  目標(biāo)函數(shù)收斂過程

    表  1  個體變異算子偽代碼

     輸入: X=$5' $–x1x2$ \cdots $xn–$3' $
     輸出: Y=$5' $–y1y2$ \cdots $yn–$3' $
     1: for j=1 to n
     2: List.add(j)
     3: end for
     4: k=random(n)
     5: for j=1 to k
     6: i = random(List.count)
     7: yi=(xi+random(3)+1) mod 4
     8: List.delete(i)
     9: end for
    下載: 導(dǎo)出CSV

    表  2  算法總體流程偽代碼

     1: Initialization
     2: while (t < max iteration)
     3: for i=1 to P
     4:  p = Pt(i)
     5:  q = Individual Mutation(p)
     6:  if q ? p then
     7:   Pt(i)=q
     8:  else if (q ? p) and (p ? q) then
     9:   if Fitness(q) > Fitness(p) then
     10:    Pt(i)=q
     11:   end if
     12:  end if
     13: end for
     14: t=t+1
     15: end while
    下載: 導(dǎo)出CSV

    表  3  7條長度為20的DNA序列的結(jié)果比較

    方法(序列)連續(xù)性發(fā)卡結(jié)構(gòu)H-measure相似度TmGC(%)
    MGA[7]
    TAGACCACTGTTGCACATGG00585250.279450
    ATTCGGTCAGACTTGCTGTG00645248.665050
    ATAGTGCGGACAGTAGTTCC00665950.163450
    AATACGCGGAACGTAACCTC00618550.415850
    AATACGCGGAACGTAACCTC00618550.415850
    ACAGCCTTAAGCCTAACTCC03655449.064150
    ATGCTTCCGACATGGAATGG03635749.816050
    f (x)064384441.75080
    IWO[8]
    ACACCAGCACACCAGAAACA90555548.467050
    GTTCAATCGCCTCTCGGTAT00575749.393550
    GCTACCTCTTCCACCATTCT00555549.245350
    GAATCAATGGCGGTCAGAAG00666649.944050
    TTGGTCCGGTTATTCCTTCG00656550.641850
    CCATCTTCCGTACTTCACTG00565651.099350
    TTCGACTCGGTTCCTTGCTA00585847.604950
    f (x)904124123.49440
    pMO-ABC[10]
    TGTGGTTGGTTAGTCGGTTG00464951.042150
    GGTGGTATTGGTGGTATTGG00474753.802750
    CTTCTCTTCTCTTGCCGCTT00395646.411250
    AACAACCTCCACACCGAACA00623249.173750
    CTCTCTCTCTCACTCTCTCA00414846.522050
    CTCTCATTCCTTCTTACCCC160435150.828350
    TGGTGTTGCTGGTGTAGGTT00485149.398550
    f (x)1603263347.39150
    MOES
    GGAGAGGAGAAGAAGAAGAG00522548.172750
    CCTCCACATCACCATTAACC00563152.380750
    CTCTCTCTCTCTCTCTCTCT00343745.665850
    TTCCTTCCTTCCTTCCTTCC00363948.750050
    TTGGTTGGTTGGTTGGTTGG00304651.305450
    TTGTTGTTGGTGGTGGTGGT00304850.223650
    TGTGTGTGGTGTGTGTTGTG00304651.002550
    f (x)002682726.71490
    下載: 導(dǎo)出CSV

    表  4  14條長度為20的DNA序列的結(jié)果比較

    方法(序列)連續(xù)性發(fā)卡結(jié)構(gòu)H-measure相似度TmGC(%)
    MGA[7]
    CTCATCTAATCAGCCTCGCA0013511448.155450
    CTAATAGTGACAGCTGCGTG0313111950.242150
    GCATCGTTAGAGACACCTAC0313412450.793250
    GCATCAATATGCGCGACTAC0013112550.281550
    CATTAAGTAGACGCTGTCGG0313211450.950750
    TATGGATGAGGAGGACCTAG0313311750.638750
    CAGAGATGTTCTGTACCACC0312811751.223250
    CGTCGAGAATTCGTAGCTCA0013711948.322450
    TCTGTTACCGTATCGGATCG0312911550.879150
    AGAAGAGTTCGACTTGCTGG0313412147.550750
    GCAAGGAATTCACCGTCTGT0313312948.988150
    CGTGTGAAGAGAGTGGTTCA0012712348.935550
    CGACTGAATCATGGACCTGT0313412649.762450
    TACCGAGAAGTAGGACTGCA0313412448.384750
    f (x)030185216873.67250
    INSGA-II[9]
    CGAGACATCGTGCATATCGT0414312449.639350
    TATAGCACGAGTGCGCGTAT0313713048.565950
    GATCTACGATCATGAGAGCG0413512649.667350
    TCTGTACTGCTGACTCGAGT0316312447.131250
    CGAGTAGTCACACGATGAGA0015213249.283650
    AGATGATCAGCAGCGACACT0313313346.554650
    TGTGCTCGTCTCTGCATACT0415913047.150750
    AGACGAGTCGTACAGTACAG0015213449.909150
    ATGTACGTGAGATGCAGCAG0013912148.927050
    ATCACTACTCGCTCGTCACT0314113247.519050
    TCAGAGATACTCACGTCACG0314212349.283650
    GACAGAGCTATCAGCTACTG0312912449.292750
    GCTGACATAGAGTGCGATAC0013013350.172550
    ACATCGACACTACTACGCAC0313314450.155450
    f (x)033198818103.61790
    pMO-ABC[10]
    GTTATTGGTGGTGTGCGTTG001438251.930550
    ACGGAAGTAGGAAGGAGAGA0013710647.808950
    GGAAGACGCAGAAGAGAAAG9012111048.260950
    CCTCCTTATTGCCTTCCTTC0011410250.308150
    AACTAACCACCGACCAACCA009511850.110250
    ACACACAACACACACACTCC008811950.457750
    ACACCACCACATTACCACAC009711951.916150
    CTTCCGTCTCTTCTCTCTCT0013410546.956150
    AAGGAGCGAGGAAGCGAAAA1601079545.830650
    AACACCAGAACATCCACACC009013150.547450
    CCAACACCATACAACAGACC009513052.372050
    AAGGCGGAAGGATAGAAGAG0012811548.537050
    TCTGCCGCTTCTTCTTCTTC001189546.400050
    TCCTCTCGTCTATTCTCCTC001119848.442750
    f (x)250157815256.54140
    MOES
    CATACACACTCACACTCACC001128951.679250
    TTGTTGTGGGTTGTCCGGTT901059049.794950
    ACACACACACACACACACAC00937850.924450
    TTGTGGTCCTGGTGTTCTCT001129048.495750
    GAGAGAGAGAGAGAGAGAGA007210045.656850
    TGGTGTGGTGTGGTTAGGTT00969350.532550
    TTGGTGGTGGTGGTTGTAGT00969550.532550
    CCAACCAACCAACCAACCAA00957851.305450
    AACAAGCCAGAAGCCAGAAG009410247.506650
    GTTGGTGCTGTTGTTGAGGT001019949.455050
    GAAGAAGGGAGGAGAGAAGA907710847.496150
    AATGGAAGCGAAGCGAAGTG009310447.676650
    AACCATCAACCGCCGAAGAA031049548.169450
    AAGGTGGAGAGGAAGGAGAA008211147.409850
    f (x)183133213326.02240
    下載: 導(dǎo)出CSV
  • ADLEMAN L M. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 266(5187): 1021–1024. doi: 10.1126/science.7973651
    DE SILVA P Y and GANEGODA G U. New trends of digital data storage in DNA[J]. BioMed Research International, 2016: 8072463.
    BRAICH R S, CHELYAPOV N, JOHNSON C, et al. Solution of a 20-variable 3-SAT problem on a DNA computer[J]. Science, 2002, 296(5567): 499–502. doi: 10.1126/science.1069528
    ZIMMERMANN K H. Efficient DNA sticker algorithms for NP-complete graph problems[J]. Computer Physics Communications, 2002, 144(3): 297–309. doi: 10.1016/S0010-4655(02)00270-9
    XU Jin, QIANG Xiaoli, ZHANG Kai, et al. A DNA computing model for the graph vertex coloring problem based on a probe graph[J]. Engineering, 2018, 4(1): 61–77. doi: 10.1016/j.eng.2018.02.011
    CHAVES-GONZáLEZ J M and VEGA-RODRíGUEZ M A. A multiobjective approach based on the behavior of fireflies to generate reliable DNA sequences for molecular computing[J]. Applied Mathematics and Computation, 2014, 227: 291–308. doi: 10.1016/j.amc.2013.11.032
    PENG Ximei, ZHENG Xuedong, WANG Bin, et al. A micro-genetic algorithm for DNA encoding sequences design[C]. The 2nd International Conference on Control Science and Systems Engineering, Singapore, 2016: 10–14.
    YANG Gaijing, WANG Bin, ZHENG Xuedong, et al. IWO algorithm based on niche crowding for DNA sequence design[J]. Interdisciplinary Sciences: Computational Life Sciences, 2017, 9(3): 341–349. doi: 10.1007/s12539-016-0160-0
    WANG Yanfeng, SHEN Yongpeng, ZHANG Xuncai, et al. An improved non-dominated sorting genetic algorithm-Ⅱ (INSGA-Ⅱ) applied to the design of DNA codewords[J]. Mathematics and Computers in Simulation, 2018, 151: 131–139. doi: 10.1016/j.matcom.2018.03.011
    CHAVES-GONZáLEZ J M and MARTíNEZ-GIL J. An efficient design for a multi-objective evolutionary algorithm to generate DNA libraries suitable for computation[J]. Interdisciplinary Sciences: Computational Life Sciences, 2018, 11(3): 542–558.
    YANG Shuming, SHAO Dongguo, and LUO Yangjie. A novel evolution strategy for multiobjective optimization problem[J]. Applied Mathematics and Computation, 2005, 170(2): 850–873. doi: 10.1016/j.amc.2004.12.025
    ARNOLD D V and BEYER H G. Investigation of the (μ, λ)-ES in the presence of noise[C]. The 2001 Congress on Evolutionary Computation, Seoul, South Korea, 2001, 1: 332–339.
    EBENAU C, ROTTSCH?FER J, and THIERAUF G. An advanced evolutionary strategy with an adaptive penalty function for mixed-discrete structural optimisation[J]. Advances in Engineering Software, 2005, 36(1): 29–38. doi: 10.1016/j.advengsoft.2003.10.008
    MEZURA-MONTES E and COELLO C A C. A simple multimembered evolution strategy to solve constrained optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(1): 1–17. doi: 10.1109/TEVC.2004.836819
    XIAO J, XU Jin, CHEN Zhihua, et al. A hybrid quantum chaotic swarm evolutionary algorithm for DNA encoding[J]. Computers & Mathematics with Applications, 2009, 57(11/12): 1949–1958.
    CHAVES-GONZáLEZ J M, VEGA-RODRíGUEZ M A, and GRANADO-CRIADO J M. A multiobjective swarm intelligence approach based on artificial bee colony for reliable DNA sequence design[J]. Engineering Applications of Artificial Intelligence, 2013, 26(9): 2045–2057. doi: 10.1016/j.engappai.2013.04.011
    MUHAMMAD M S, SELVAN K V, MASRA S M W, et al. An improved binary particle swarm optimization algorithm for DNA encoding enhancement[C]. 2011 IEEE Symposium on Swarm Intelligence, Paris, France, 2011: 1–8.
    CHAVES-GONZáLEZ J M and VEGA-RODRíGUEZ M A. DNA strand generation for DNA computing by using a multi-objective differential evolution algorithm[J]. Biosystems, 2014, 116: 49–64. doi: 10.1016/j.biosystems.2013.12.005
    BUI L T and ALAM S. Multi-Objective Optimization in Computational Intelligence: Theory and Practice[M]. Hershey: IGI Global, 2008.
    SHIN S Y, LEE I H, KIM D, et al. Multiobjective evolutionary optimization of DNA sequences for reliable DNA computing[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(2): 143–158. doi: 10.1109/TEVC.2005.844166
  • 加載中
圖(2) / 表(4)
計量
  • 文章訪問數(shù):  3933
  • HTML全文瀏覽量:  1474
  • PDF下載量:  114
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-11-01
  • 修回日期:  2020-03-01
  • 網(wǎng)絡(luò)出版日期:  2020-04-09
  • 刊出日期:  2020-06-22

目錄

    /

    返回文章
    返回