基于藥物互作網(wǎng)絡(luò)的協(xié)同與拮抗預(yù)測研究
doi: 10.11999/JEIT190867 cstr: 32379.14.JEIT190867
-
1.
溫州大學(xué)計(jì)算機(jī)與人工智能學(xué)院 溫州 325035
-
2.
廣州大學(xué)計(jì)算科技研究院 廣州 510006
-
3.
黔南民族師范學(xué)院計(jì)算機(jī)與信息學(xué)院 都勻 558000
Prediction of Drug Synergy and Antagonism Based on Drug-Drug Interaction Network
-
1.
College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
-
2.
Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
-
3.
School of Computer Science and Information Technology, Qiannan Normal University for Nationalities, Duyun 558000, China
-
摘要: 藥物的協(xié)同與拮抗關(guān)系預(yù)測,有助于藥物的使用安全及組合用藥的發(fā)展。該文從藥物互作網(wǎng)絡(luò)(DDINet)出發(fā),基于網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)構(gòu)造分類特征,提出一種預(yù)測藥物協(xié)同和拮抗關(guān)系的方法。從特征選擇結(jié)果可知,根據(jù)藥物與其公共鄰居節(jié)點(diǎn)關(guān)系構(gòu)造的特征表現(xiàn)出了明顯的正負(fù)樣本分布差距,能有效地反映出藥物的協(xié)同或拮抗關(guān)系。在使用不同特征分類器的分類結(jié)果中,最優(yōu)AUC和分類精度值分別達(dá)到了0.9687和0.9187。而在協(xié)同與拮抗關(guān)系預(yù)測結(jié)果中,其預(yù)測精度值達(dá)到了0.45和0.75以上。這說明基于網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的方法能有效對藥物協(xié)同和拮抗關(guān)系進(jìn)行分類和預(yù)測。與傳統(tǒng)基于藥物功能、結(jié)構(gòu)、靶基因等相似性特征的方法相比,該方法計(jì)算簡單高效,將會有效促進(jìn)組合用藥的發(fā)展。
-
關(guān)鍵詞:
- 藥物相互作用預(yù)測 /
- 網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu) /
- 藥物協(xié)同 /
- 藥物拮抗
Abstract: Accurately predicting the synergistic and antagonistic relationship of drugs is helpful to the safety of drug use and the development of drug combination. A method for predicting drug synergy and antagonistic is proposed, which based on the Drug-Drug Interaction Network (DDINet) and its topological structure. From the result of feature selection, it can be seen that the feature constructed based on the interaction between the drug and its common neighbor node shows an obvious difference in the distribution of positive and negative samples, which can effectively reflect the drug synergy or antagonism. In the classification results using different feature classifiers, the optimal Area Under the Curve (AUC) and classification accuracy value reache 0.9687 and 0.9187 respectively. In the prediction results of synergy and antagonism, the prediction accuracy also reache above 0.45 and 0.75. This shows that the method based on network topology can effectively classify and predict the synergistic and antagonistic effects of drugs. Compared with the traditional methods based on similarity features of drug function, structure, target gene, etc, this method is simple and efficient to calculate, and can effectively promote the development of combination drugs.-
Key words:
- Prediction Drug-Drug Interactions(DDIs) /
- Network topology /
- Synergy /
- Antagonism
-
VAN ROON E N, FLIKWEERT S, LE COMTE M, et al. Clinical relevance of drug-drug interactions[J]. Drug Safety, 2005, 28(12): 1131–1139. doi: 10.2165/00002018-200528120-00007 CHOU Tingchao. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies[J]. Pharmacological Reviews, 2006, 58(3): 621–681. doi: 10.1124/pr.58.3.10 LEHáR J, KRUEGER A S, AVERY W, et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity[J]. Nature Biotechnology, 2009, 27(7): 659–666. doi: 10.1038/nbt.1549 CHAIT R, CRANEY A, and KISHONY R. Antibiotic interactions that select against resistance[J]. Nature, 2007, 446(7136): 668–671. doi: 10.1038/nature05685 VENKATAKRISHNAN K, VON MOLTKE L L, OBACH R S, et al. Drug metabolism and drug interactions: Application and clinical value of in vitro models[J]. Current Drug Metabolism, 2003, 4(5): 423–459. doi: 10.2174/1389200033489361 PIRMOHAMED M and ORME M L. Drug Interactions of Clinical Importance[M]. DAVIES D M, FERNER R E, and DE GLANVILLE H. Davies's Textbook of Adverse Drug Reactions. 5th ed. London: Chapman & Hall, 1998: 888–912. TAKEDA T, HAO Ming, CHENG Tiejun, et al. Predicting drug-drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge[J]. Journal of Cheminformatics, 2017, 9: 16. doi: 10.1186/s13321-017-0200-8 FOKOUE A, SADOGHI M, HASSANZADEH O, et al. Predicting drug-drug interactions through large-scale similarity-based link prediction[C]. The 13th International Conference European Semantic Web Conference, Heraklion, Greece, 2016: 774–789. doi: 10.1007/978-3-319-34129-3_47. VILAR S, HARPAZ R, URIARTE E, et al. Drug—drug interaction through molecular structure similarity analysis[J]. Journal of the American Medical Informatics Association, 2012, 19(6): 1066–1074. doi: 10.1136/amiajnl-2012-000935 VILAR S, URIARTE E, SANTANA L, et al. Detection of drug-drug interactions by modeling interaction profile fingerprints[J]. PLoS One, 2013, 8(3): e58321. doi: 10.1371/journal.pone.0058321 KASTRIN A, FERK P, and LESKO?EK B. Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning[J]. PLoS One, 2018, 13(5): e0196865. doi: 10.1371/journal.pone.0196865 CHENG Feixiong and ZHAO Zhongming. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties[J]. Journal of the American Medical Informatics Association, 2014, 21(e2): e278–e286. doi: 10.1136/amiajnl-2013-002512 RYU J Y, KIM H U, and LEE S Y. Deep learning improves prediction of drug-drug and drug-food interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4304–E4311. doi: 10.1073/pnas.1803294115 LUO Heng, ZHANG Ping, HUANG Hui, et al. DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome[J]. Nucleic Acids Research, 2014, 42(W1): W46–W52. doi: 10.1093/nar/gku433 ZHANG Ping, WANG Fei, HU Jianying, et al. Label propagation prediction of drug-drug interactions based on clinical side effects[J]. Scientific Reports, 2015, 5: 12339. doi: 10.1038/srep12339 LIU Lili, CHEN Lei, ZHANG Yuhang, et al. Analysis and prediction of drug-drug interaction by minimum redundancy maximum relevance and incremental feature selection[J]. Journal of Biomolecular Structure and Dynamics, 2017, 35(2): 312–329. doi: 10.1080/07391102.2016.1138142 TAKARABE M, SHIGEMIZU D, KOTERA M, et al. Network-based analysis and characterization of adverse drug-drug interactions[J]. Journal of Chemical Information and Modeling, 2011, 51(11): 2977–2985. doi: 10.1021/ci200367w GOTTLIEB A, STEIN G Y, ORON Y, et al. INDI: A computational framework for inferring drug interactions and their associated recommendations[J]. Molecular Systems Biology, 2012, 8: 592. doi: 10.1038/msb.2012.26 WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0: A major update to the DrugBank database for 2018[J]. Nucleic Acids Research, 2017, 46(D1): D1074–D1082. doi: 10.1093/nar/gkx1037 CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1007/bf00994018 陳素根, 吳小俊. 基于特征值分解的中心支持向量機(jī)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 557–564. doi: 10.11999/JEIT150693CHEN Sugen and WU Xiaojun. Eigenvalue proximal support vector machine algorithm based on eigenvalue decoposition[J]. Journal of Electronics &Information Technology, 2016, 38(3): 557–564. doi: 10.11999/JEIT150693 汪廷華, 田盛豐, 黃厚寬. 特征加權(quán)支持向量機(jī)[J]. 電子與信息學(xué)報(bào), 2009, 31(3): 514–518. doi: 10.3724/SP.J.1146.2007.01711WANG Tinghua, TIAN Shengfeng, and HUANG Houkuan. Feature weighted support vector machine[J]. Journal of Electronics &Information Technology, 2009, 31(3): 514–518. doi: 10.3724/SP.J.1146.2007.01711 WU Shaomin and FLACH P. A scored AUC metric for classifier evaluation and selection[C]. ICML 2005 Workshop on ROC Analysis in Machine Learning, Bonn, Germany, 2005. HOSSIN M and SULAIMAN M N. A review on evaluation metrics for data classification evaluations[J]. International Journal of Data Mining & Knowledge Management Process, 2015, 5(2): 1–11. doi: 10.5121/ijdkp.2015.5201 ARLOT S and CELISSE A. A survey of cross-validation procedures for model selection[J]. Statistics Surveys, 2010, 4: 40–79. doi: 10.1214/09-SS054 LIU Weiping and Lü Linyuan. Link prediction based on local random walk[J]. EPL (Europhysics Letters) , 2010, 89(5): 58007. doi: 10.1209/0295-5075/89/58007 TANG Jiliang, ALELYANI S, and LIU Huan. Feature Selection for Classification: A Review[M]. AGGARWAL C C. Data Classification: Algorithms and Applications. New York: CRC Press, 2014: 37. -