一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于藥物互作網(wǎng)絡(luò)的協(xié)同與拮抗預(yù)測研究

劉文斌 陳杰 方剛 石曉龍 許鵬

劉文斌, 陳杰, 方剛, 石曉龍, 許鵬. 基于藥物互作網(wǎng)絡(luò)的協(xié)同與拮抗預(yù)測研究[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1420-1427. doi: 10.11999/JEIT190867
引用本文: 劉文斌, 陳杰, 方剛, 石曉龍, 許鵬. 基于藥物互作網(wǎng)絡(luò)的協(xié)同與拮抗預(yù)測研究[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1420-1427. doi: 10.11999/JEIT190867
Wenbin LIU, Jie CHEN, Gang FANG, Xiaolong SHI, Peng XU. Prediction of Drug Synergy and Antagonism Based on Drug-Drug Interaction Network[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1420-1427. doi: 10.11999/JEIT190867
Citation: Wenbin LIU, Jie CHEN, Gang FANG, Xiaolong SHI, Peng XU. Prediction of Drug Synergy and Antagonism Based on Drug-Drug Interaction Network[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1420-1427. doi: 10.11999/JEIT190867

基于藥物互作網(wǎng)絡(luò)的協(xié)同與拮抗預(yù)測研究

doi: 10.11999/JEIT190867 cstr: 32379.14.JEIT190867
基金項(xiàng)目: 國家重點(diǎn)研發(fā)計(jì)劃(2019YFA0706402),國家自然科學(xué)基金(61572367, 61573017, 61972107, 61972109)
詳細(xì)信息
    作者簡介:

    劉文斌:男,1969年生,教授,研究方向?yàn)樯镄畔W(xué)

    陳杰:男,1994年生,碩士生,研究方向?yàn)樯镄畔W(xué)

    方剛:男,1969年生,教授,研究方向?yàn)樯镄畔W(xué)

    石曉龍:男,1975年生,教授,研究方向?yàn)樯镄畔W(xué)

    許鵬:男,1986年生,博士后,研究方向?yàn)樯镄畔W(xué)

    通訊作者:

    劉文斌 wbliu6910@126.com

  • 中圖分類號: TP301

Prediction of Drug Synergy and Antagonism Based on Drug-Drug Interaction Network

Funds: The National Key R&D Program of China (2019YFA0706402), The National Natural Science Foundation of China (61572367, 61573017, 61972107, 61972109)
  • 摘要: 藥物的協(xié)同與拮抗關(guān)系預(yù)測,有助于藥物的使用安全及組合用藥的發(fā)展。該文從藥物互作網(wǎng)絡(luò)(DDINet)出發(fā),基于網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)構(gòu)造分類特征,提出一種預(yù)測藥物協(xié)同和拮抗關(guān)系的方法。從特征選擇結(jié)果可知,根據(jù)藥物與其公共鄰居節(jié)點(diǎn)關(guān)系構(gòu)造的特征表現(xiàn)出了明顯的正負(fù)樣本分布差距,能有效地反映出藥物的協(xié)同或拮抗關(guān)系。在使用不同特征分類器的分類結(jié)果中,最優(yōu)AUC和分類精度值分別達(dá)到了0.9687和0.9187。而在協(xié)同與拮抗關(guān)系預(yù)測結(jié)果中,其預(yù)測精度值達(dá)到了0.45和0.75以上。這說明基于網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的方法能有效對藥物協(xié)同和拮抗關(guān)系進(jìn)行分類和預(yù)測。與傳統(tǒng)基于藥物功能、結(jié)構(gòu)、靶基因等相似性特征的方法相比,該方法計(jì)算簡單高效,將會有效促進(jìn)組合用藥的發(fā)展。
  • 圖  1  藥物Di和Dj的1階鄰居節(jié)點(diǎn)拓?fù)潢P(guān)系示意

    圖  2  特征x1x5在正負(fù)樣本中的分布

    圖  3  特征y1y5, z1在正負(fù)樣本中的分布

    圖  4  特征x3, x4, y2, y3, y4, z1在正負(fù)樣本中的分布

    圖  5  不同特征組合的ROC曲線

    圖  6  不同f取值對應(yīng)的預(yù)測樣本分布情況

    圖  7  不同f, L取值下的協(xié)同、拮抗關(guān)系預(yù)測精度

  • VAN ROON E N, FLIKWEERT S, LE COMTE M, et al. Clinical relevance of drug-drug interactions[J]. Drug Safety, 2005, 28(12): 1131–1139. doi: 10.2165/00002018-200528120-00007
    CHOU Tingchao. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies[J]. Pharmacological Reviews, 2006, 58(3): 621–681. doi: 10.1124/pr.58.3.10
    LEHáR J, KRUEGER A S, AVERY W, et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity[J]. Nature Biotechnology, 2009, 27(7): 659–666. doi: 10.1038/nbt.1549
    CHAIT R, CRANEY A, and KISHONY R. Antibiotic interactions that select against resistance[J]. Nature, 2007, 446(7136): 668–671. doi: 10.1038/nature05685
    VENKATAKRISHNAN K, VON MOLTKE L L, OBACH R S, et al. Drug metabolism and drug interactions: Application and clinical value of in vitro models[J]. Current Drug Metabolism, 2003, 4(5): 423–459. doi: 10.2174/1389200033489361
    PIRMOHAMED M and ORME M L. Drug Interactions of Clinical Importance[M]. DAVIES D M, FERNER R E, and DE GLANVILLE H. Davies's Textbook of Adverse Drug Reactions. 5th ed. London: Chapman & Hall, 1998: 888–912.
    TAKEDA T, HAO Ming, CHENG Tiejun, et al. Predicting drug-drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge[J]. Journal of Cheminformatics, 2017, 9: 16. doi: 10.1186/s13321-017-0200-8
    FOKOUE A, SADOGHI M, HASSANZADEH O, et al. Predicting drug-drug interactions through large-scale similarity-based link prediction[C]. The 13th International Conference European Semantic Web Conference, Heraklion, Greece, 2016: 774–789. doi: 10.1007/978-3-319-34129-3_47.
    VILAR S, HARPAZ R, URIARTE E, et al. Drug—drug interaction through molecular structure similarity analysis[J]. Journal of the American Medical Informatics Association, 2012, 19(6): 1066–1074. doi: 10.1136/amiajnl-2012-000935
    VILAR S, URIARTE E, SANTANA L, et al. Detection of drug-drug interactions by modeling interaction profile fingerprints[J]. PLoS One, 2013, 8(3): e58321. doi: 10.1371/journal.pone.0058321
    KASTRIN A, FERK P, and LESKO?EK B. Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning[J]. PLoS One, 2018, 13(5): e0196865. doi: 10.1371/journal.pone.0196865
    CHENG Feixiong and ZHAO Zhongming. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties[J]. Journal of the American Medical Informatics Association, 2014, 21(e2): e278–e286. doi: 10.1136/amiajnl-2013-002512
    RYU J Y, KIM H U, and LEE S Y. Deep learning improves prediction of drug-drug and drug-food interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4304–E4311. doi: 10.1073/pnas.1803294115
    LUO Heng, ZHANG Ping, HUANG Hui, et al. DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome[J]. Nucleic Acids Research, 2014, 42(W1): W46–W52. doi: 10.1093/nar/gku433
    ZHANG Ping, WANG Fei, HU Jianying, et al. Label propagation prediction of drug-drug interactions based on clinical side effects[J]. Scientific Reports, 2015, 5: 12339. doi: 10.1038/srep12339
    LIU Lili, CHEN Lei, ZHANG Yuhang, et al. Analysis and prediction of drug-drug interaction by minimum redundancy maximum relevance and incremental feature selection[J]. Journal of Biomolecular Structure and Dynamics, 2017, 35(2): 312–329. doi: 10.1080/07391102.2016.1138142
    TAKARABE M, SHIGEMIZU D, KOTERA M, et al. Network-based analysis and characterization of adverse drug-drug interactions[J]. Journal of Chemical Information and Modeling, 2011, 51(11): 2977–2985. doi: 10.1021/ci200367w
    GOTTLIEB A, STEIN G Y, ORON Y, et al. INDI: A computational framework for inferring drug interactions and their associated recommendations[J]. Molecular Systems Biology, 2012, 8: 592. doi: 10.1038/msb.2012.26
    WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0: A major update to the DrugBank database for 2018[J]. Nucleic Acids Research, 2017, 46(D1): D1074–D1082. doi: 10.1093/nar/gkx1037
    CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1007/bf00994018
    陳素根, 吳小俊. 基于特征值分解的中心支持向量機(jī)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(3): 557–564. doi: 10.11999/JEIT150693

    CHEN Sugen and WU Xiaojun. Eigenvalue proximal support vector machine algorithm based on eigenvalue decoposition[J]. Journal of Electronics &Information Technology, 2016, 38(3): 557–564. doi: 10.11999/JEIT150693
    汪廷華, 田盛豐, 黃厚寬. 特征加權(quán)支持向量機(jī)[J]. 電子與信息學(xué)報(bào), 2009, 31(3): 514–518. doi: 10.3724/SP.J.1146.2007.01711

    WANG Tinghua, TIAN Shengfeng, and HUANG Houkuan. Feature weighted support vector machine[J]. Journal of Electronics &Information Technology, 2009, 31(3): 514–518. doi: 10.3724/SP.J.1146.2007.01711
    WU Shaomin and FLACH P. A scored AUC metric for classifier evaluation and selection[C]. ICML 2005 Workshop on ROC Analysis in Machine Learning, Bonn, Germany, 2005.
    HOSSIN M and SULAIMAN M N. A review on evaluation metrics for data classification evaluations[J]. International Journal of Data Mining & Knowledge Management Process, 2015, 5(2): 1–11. doi: 10.5121/ijdkp.2015.5201
    ARLOT S and CELISSE A. A survey of cross-validation procedures for model selection[J]. Statistics Surveys, 2010, 4: 40–79. doi: 10.1214/09-SS054
    LIU Weiping and Lü Linyuan. Link prediction based on local random walk[J]. EPL (Europhysics Letters) , 2010, 89(5): 58007. doi: 10.1209/0295-5075/89/58007
    TANG Jiliang, ALELYANI S, and LIU Huan. Feature Selection for Classification: A Review[M]. AGGARWAL C C. Data Classification: Algorithms and Applications. New York: CRC Press, 2014: 37.
  • 加載中
圖(7)
計(jì)量
  • 文章訪問數(shù):  2726
  • HTML全文瀏覽量:  1603
  • PDF下載量:  110
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-11-01
  • 修回日期:  2020-01-15
  • 網(wǎng)絡(luò)出版日期:  2020-02-18
  • 刊出日期:  2020-06-22

目錄

    /

    返回文章
    返回