DNA存儲及其研究進(jìn)展
doi: 10.11999/JEIT190863 cstr: 32379.14.JEIT190863
-
1.
廣州大學(xué)計算科技研究院 廣州 510006
-
2.
黔南民族師范學(xué)院計算機(jī)與信息學(xué)院 都勻 558000
基金項目: 國家重點(diǎn)研發(fā)計劃(2019YFA0706402),國家自然科學(xué)基金(61572367, 61573017, 61972107, 61972109)
DNA Storage and Its Research Progress
-
1.
Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
-
2.
School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun 558000, China
Funds: The National Key R&D Program of China (2019YFA0706402), The National Natural Science Foundation of China (61572367, 61573017, 61972107, 61972109)
-
摘要: DNA存儲是一種以生物大分子DNA作為信息載體的一種新的存儲技術(shù)。與傳統(tǒng)的電子信息存儲相比,DNA存儲具有容量大、密度高、低能耗等優(yōu)點(diǎn)。隨著DNA合成、測序技術(shù)的發(fā)展以及大數(shù)據(jù)時代對數(shù)據(jù)存儲需求的指數(shù)增長,近年來DNA存儲在存儲容量、密度以及可靠性等方面都取得了巨大的進(jìn)展。該文主要介紹了DNA存儲的發(fā)展歷史、DNA存儲的基本流程、DNA存儲在數(shù)據(jù)庫、文檔存儲以及體內(nèi)存儲的研究進(jìn)展。最后,總結(jié)了DNA存儲未來面臨的挑戰(zhàn)以及發(fā)展方向。
-
關(guān)鍵詞:
- DNA存儲 /
- DNA數(shù)據(jù)庫 /
- 體內(nèi)存儲 /
- 體外存儲
Abstract: DNA storage is a new kind of technique to store information by the biological molecules DNA. Compared with traditional electronic storage medium, DNA storage has the advantages such as massive storage capacity, high storage density and low energy consumption. The developments in DNA synthetic and sequencing technique, and the exponential requirement for big data storage have pushed the research of DNA storage achieving great progress on storage capacity, storage density and reliability. The development history of DNA storage, its general workflow, and the development in DNA database, documental storage and in vivo storage are introduced. Finally, the challenge of DNA storage and its potential future research direction are pointed out.-
Key words:
- DNA storage /
- DNA database /
- In vivo storage /
- In vitro storage
-
FEYNMAN R P. There’s plenty of room at the bottom[J]. Resonance, 2011, 16(9): 890. doi: 10.1007/s12045-011-0109-x ADLEMAN L M. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 266(5187): 1021–1024. doi: 10.1126/science.7973651 BAUM E B. Building an associative memory vastly larger than the brain[J]. Science, 1995, 268(5210): 583–585. doi: 10.1126/science.7725109 WIENER N. Interview: Machines smarter than men?[J]. US News World Report, 1964, 56: 84–86. NEIMAN M S. On the molecular memory systems and the directed mutations[J]. Radiotekhnika, 1965, 6: 1–8. DAVIS J. Microvenus[J]. Art Journal, 1996, 55(1): 70–74. doi: 10.1080/00043249.1996.10791743 CLELLAND C T, RISCA V, and BANCROFT C. Hiding messages in DNA microdots[J]. Nature, 1999, 399(6736): 533–534. doi: 10.1038/21092 LEIER A, RICHTER C, BANZHAF W, et al. Cryptography with DNA binary strands[J]. Biosystems, 2000, 57(1): 13–22. doi: 10.1016/S0303-2647(00)00083-6 REIF J H, LABEAN T H, PIRRUNG M, et al. Experimental construction of very large scale DNA databases with associative search capability[C]. The 7th International Workshop on DNA-Based Computers, Tampa, USA, 2002: 231–247. doi: 10.1007/3-540-48017-X_22. CHURCH G M, GAO Yuan, and KOSURI S. Next-generation digital information storage in DNA[J]. Science, 2012, 337(6102): 1628–1628. doi: 10.1126/science.1226355 HECKEL R, SHOMORONY I, RAMCHANDRAN K, et al. Fundamental limits of DNA storage systems[C]. 2017 IEEE International Symposium on Information Theory, Aachen, Germany, 2017: 3130–3134. doi: 10.1109/ISIT.2017.8007106. HECKEL R, MIKUTIS G, and GRASS R N. A characterization of the DNA data storage channel[J]. Scientific Reports, 2019, 9(1): 9663. doi: 10.1038/s41598-019-45832-6 HOSHIKA S, LEAL N A, KIM M J, et al. Hachimoji DNA and RNA: A genetic system with eight building blocks[J]. Science, 2019, 363(6429): 884–887. doi: 10.1126/science.aat0971 BANCROFT C, BOWLER T, BLOOM B, et al. Long-term storage of information in DNA[J]. Science, 2001, 293(5536): 1763–1765. doi: 10.1126/science.293.5536.1763c GARZON M H and DEATON R J. Codeword design and information encoding in DNA ensembles[J]. Natural Computing, 2004, 3(3): 253–292. doi: 10.1023/B:NACO.0000036818.27537.c9 王向紅, 劉文斌, 朱翔鷗, 等. DNA計算中的單模板編碼方法改進(jìn)研究[J]. 電子學(xué)報, 2009, 37(12): 2720–2724. doi: 10.3321/–j.issn:0372-2112.2009.12.021WANG Xianghong, LIU Wenbin, ZHU Xiangou, et al. Improving the single template method in DNA computing[J]. Acta Electronica Sinica, 2009, 37(12): 2720–2724. doi: 10.3321/–j.issn:0372-2112.2009.12.021 劉文斌, 朱翔鷗, 王向紅, 等. 一種優(yōu)化DNA計算模板性能的新方法[J]. 電子與信息學(xué)報, 2008, 30(5): 1131–1135. doi: 10.3724/SP.J.1146.2006.01640LIU Wenbin, ZHU Xiangou, WANG Xianghong, et al. A new method to optimize the template set in DNA computing[J]. Journal of Electronics &Information Technology, 2008, 30(5): 1131–1135. doi: 10.3724/SP.J.1146.2006.01640 劉文斌, 陳麗春, 白寶鋼, 等. DNA計算中的模板框優(yōu)化方法研究[J]. 電子學(xué)報, 2007, 35(8): 1490–1494. doi: 10.3321/j.issn:0372-2112.2007.08.014LIU Wenbin, CHEN Lichun, BAI Baogang, et al. Research on optimizing the template frame in DNA computing[J]. Acta Electronica Sinica, 2007, 35(8): 1490–1494. doi: 10.3321/j.issn:0372-2112.2007.08.014 KASHIWAMURA S, YAMAMOTO M, KAMEDA A, et al. Potential for enlarging DNA memory: The validity of experimental operations of scaled-up nested primer molecular memory[J]. Biosystems, 2005, 80(1): 99–112. doi: 10.1016/j.biosystems.2004.10.007 KASHIWAMURA S, YAMAMOTO M, KAMEDA A, et al. Experimental challenge of scaled-up hierarchical DNA memory expressing a 10, 000-address space[C]. Preliminary Proceeding of 11th International Meeting on DNA based Computers, London, UK, 2005. YAMAMOTO M, KASHIWAMURA S, OHUCHI A, et al. Large-scale DNA memory based on the nested PCR[J]. Natural Computing, 2008, 7(3): 335–346. doi: 10.1007/s11047-008-9076-x YAZDI S M H T, YUAN Yongbo, MA Jian, et al. A rewritable, random-access DNA-based storage system[J]. Scientific Reports, 2015, 5: 14138. doi: 10.1038/srep14138 STEWART K, CHEN Y J, WARD D, et al. A content-addressable DNA database with learned sequence encodings[C]. The 24th International Conference on DNA Computing and Molecular Programming, Jinan, China, 2018: 55–70. doi: 10.1007/978-3-030-00030-1_4. GOLDMAN N, BERTONE P, CHEN Siyuan, et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA[J]. Nature, 2013, 494(7435): 77–80. doi: 10.1038/nature11875 BORNHOLT J, LOPEZ R, CARMEAN D M, et al. A DNA-based archival storage system[J]. ACM SIGARCH Computer Architecture News, 2016, 44(2): 637–649. doi: 10.1145/2980024.2872397 ERLICH Y and ZIELINSKI D. DNA Fountain enables a robust and efficient storage architecture[J]. Science, 2017, 355(6328): 950–954. doi: 10.1126/science.aaj2038 YAZDI S M H T, GABRYS R, and MILENKOVIC O. Portable and error-free DNA-based data storage[J]. Scientific Reports, 2017, 7: 5011. doi: 10.1038/s41598-017-05188-1 ORGANICK L, ANG S D, CHEN Y J, et al. Random access in large-scale DNA data storage[J]. Nature Biotechnology, 2018, 36(3): 242–248. doi: 10.1038/nbt.4079 CHEN Weigang, HUANG Gang, LI Bingzhi, et al. DNA information storage for audio and video files[J]. Scientia Sinica Vitae, 2020, 50(1): 81–85. doi: 10.1360/SSV-2019-0211 MEISER L C, ANTKOWIAK P L, KOCH J, et al. Reading and writing digital data in DNA[J]. Nature Protocols, 2020, 15(1): 86–101. doi: 10.1038/s41596-019-0244-5 Anavy, L., Vaknin, I., Atar, O. et al. Data storage in DNA with fewer synthesis cycles using composite DNA letters[J]. Nat Biotechnol 2019, 37, 1229–1236. doi: https://doi.org/10.1038/s41587-019-0240-x. LENZ A, SIEGEL P H, WACHTER-ZEH A, et al. Coding over Sets for DNA storage[C]. 2018 IEEE International Symposium on Information Theory, Vail, USA, 2018: 2411–2415. doi: 10.1109/ISIT.2018.8437544. YACHIE N, OHASHI Y, and TOMITA M. Stabilizing synthetic data in the DNA of living organisms[J]. Systems and Synthetic Biology, 2008, 2(1/2): 19–25. doi: 10.1007/s11693-008-9020-5 GIBSON D G, GLASS J I, LARTIGUE C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987): 52–56. doi: 10.1126/science.1190719 SHIPMAN S L, NIVALA J, MACKLIS J D, et al. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria[J]. Nature, 2017, 547(7663): 345–349. doi: 10.1038/nature23017 FARZADFARD F, GHARAEI N, HIGASHIKUNI Y, et al. Single-nucleotide-resolution computing and memory in living cells[J]. Molecular Cell, 2019, 75(4): 769–780.E4. doi: 10.1016/j.molcel.2019.07.011 -