一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

憶阻突觸耦合Hopfield神經(jīng)網(wǎng)絡(luò)的初值敏感動力學(xué)

陳墨 陳成杰 包伯成 徐權(quán)

陳墨, 陳成杰, 包伯成, 徐權(quán). 憶阻突觸耦合Hopfield神經(jīng)網(wǎng)絡(luò)的初值敏感動力學(xué)[J]. 電子與信息學(xué)報, 2020, 42(4): 870-877. doi: 10.11999/JEIT190858
引用本文: 陳墨, 陳成杰, 包伯成, 徐權(quán). 憶阻突觸耦合Hopfield神經(jīng)網(wǎng)絡(luò)的初值敏感動力學(xué)[J]. 電子與信息學(xué)報, 2020, 42(4): 870-877. doi: 10.11999/JEIT190858
Mo CHEN, Chengjie CHEN, Bocheng BAO, Quan XU. Initial Sensitive Dynamics in Memristor Synapse-coupled Hopfield Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(4): 870-877. doi: 10.11999/JEIT190858
Citation: Mo CHEN, Chengjie CHEN, Bocheng BAO, Quan XU. Initial Sensitive Dynamics in Memristor Synapse-coupled Hopfield Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(4): 870-877. doi: 10.11999/JEIT190858

憶阻突觸耦合Hopfield神經(jīng)網(wǎng)絡(luò)的初值敏感動力學(xué)

doi: 10.11999/JEIT190858 cstr: 32379.14.JEIT190858
基金項目: 國家自然科學(xué)基金(51777016, 61801054, 61601062),江蘇省研究生科研與實踐創(chuàng)新計劃項目(KYCX19_1767)
詳細信息
    作者簡介:

    陳墨:女,1982年生,副教授,研究方向為憶阻電路與系統(tǒng)、類腦計算與神經(jīng)網(wǎng)絡(luò)

    陳成杰:男,1996年生,碩士生,研究方向為類腦計算與神經(jīng)網(wǎng)絡(luò)、神經(jīng)混沌動力學(xué)

    包伯成:男,1965年生,教授,研究方向為憶阻電路與系統(tǒng)、混沌信息動力學(xué)和類腦計算與神經(jīng)網(wǎng)絡(luò)

    徐權(quán):男,1983年生,副教授,研究方向為非自治混沌電路與系統(tǒng)、類腦計算與神經(jīng)網(wǎng)絡(luò)

    通訊作者:

    陳墨 mchen@cczu.edu.cn

  • 中圖分類號: TN601; TN711.4

Initial Sensitive Dynamics in Memristor Synapse-coupled Hopfield Neural Network

Funds: The National Natural Science Foundation of China (51777016, 61801054, 61601062), The Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (KYCX19_1767)
  • 摘要: 該文報道了3神經(jīng)元Hopfield神經(jīng)網(wǎng)絡(luò)(HNN)在電磁感應(yīng)電流作用下的初值敏感動力學(xué)。利用非理想憶阻突觸,模擬由兩個相鄰神經(jīng)元膜電位之差引起的電磁感應(yīng)電流,構(gòu)建了一種簡單的4維憶阻Hopfield神經(jīng)網(wǎng)絡(luò)模型。借助理論分析和數(shù)值仿真,分析了不同憶阻突觸耦合強度下的復(fù)雜動力學(xué)行為,揭示了與狀態(tài)初值密切相關(guān)的特殊動力學(xué)行為。最后,設(shè)計了該憶阻HNN的模擬等效實現(xiàn)電路,并由PSIM電路仿真驗證了MATLAB數(shù)值仿真的正確性。
  • 圖  1  基于非理想憶阻突觸的HNN的連接拓撲

    圖  2  不同憶阻耦合強度時H1(y, z)和H2(y, z)函數(shù)曲線及交點平衡點

    圖  3  不同初值下隨參數(shù)k變化的共存分岔行為

    圖  4  不同憶阻耦合強度下x1x3平面上的相軌圖

    圖  5  狀態(tài)變量x1隨狀態(tài)初值變化的分岔圖

    圖  6  不同憶阻耦合強度下x1(0)–x2(0)平面的吸引盆

    圖  7  不同憶阻耦合強度下共存吸引子在x1x3平面的相軌圖

    圖  8  憶阻HNN模型(2)的等效實現(xiàn)電路

    圖  9  PSIM電路仿真得到的共存吸引子在v1x3平面上的相軌圖

    表  1  k=–1, 0和1時的平衡點及其特征值和穩(wěn)定性

    k平衡點特征值穩(wěn)定性
    –1P0: (0, 0, 0, 0)1.6062, –0.9531±j2.3986, –1不穩(wěn)定指數(shù)1鞍焦
    P1: (–0.0019, –0.1689, 3.3462, 0.1670)0.0981±j2.0026, –0.8763, –0.9875不穩(wěn)定指數(shù)2鞍焦
    P2: (0.0369, 0.1814, –3.5887, –0.1445)0.5146±j2.0051, –0.9923, –1.0882不穩(wěn)定指數(shù)2鞍焦
    P3: (0.9448, 2.5018, –19.7332, –1.5570)3.4659, –0.9464, –1, –1.6894不穩(wěn)定鞍點
    0P0: (0, 0, 0, 0)1.6062, –0.9531±j2.3986, –1不穩(wěn)定指數(shù)1鞍焦
    P1: (0.0220, 0.1761, –3.4860, –0.1541)0.3267±j2.0074, –0.9906, –1不穩(wěn)定指數(shù)2鞍焦
    P2: (–0.0220, –0.1761, 3.4860, 0.1541)0.3267±j2.0074, –0.9906, –1不穩(wěn)定指數(shù)2鞍焦
    1P0: (0, 0, 0, 0)1.6062, –0.9531±j2.3986, –1不穩(wěn)定指數(shù)1鞍焦
    P1: (–0.9448, –2.5018, 19.7332, 1.5570)3.4659, –0.9464, –1, –1.6894不穩(wěn)定鞍點
    P2: (–0.0369, –0.1814, 3.5887, 0.1445)0.5146±j2.0051, –0.9923, –1.0882不穩(wěn)定指數(shù)2鞍焦
    P3: (0.0019, 0.1689, –3.3462, –0.1670)0.0981±j2.0026, –0.8763, –0.9875不穩(wěn)定指數(shù)2鞍焦
    下載: 導(dǎo)出CSV

    表  2  圖7中不同顏色吸引子對應(yīng)的初值及吸引子類型

    顏色k=0.6k=–0.5吸引子類型
    (–10–6, 0, 0, 0)(0, –10–9, 0, 0)周期吸引子
    (10–6, 0, 0, 0)(0, 10–9, 0, 0)多周期吸引子
    (10–5, 0, 0, 0)(0, 10–7, 0, 0)混沌吸引子
    (1, 0, 0, 0)(0, –2, 0, 0)發(fā)散
    (0, 5, 0, 0)發(fā)散
    下載: 導(dǎo)出CSV
  • HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088–3092. doi: 10.1073/pnas.81.10.3088
    KORN H and FAURE P. Is there chaos in the brain? II. Experimental evidence and related models[J]. Comptes Rendus Biologies, 2003, 326(9): 787–840. doi: 10.1016/j.crvi.2003.09.011
    MA Jun and TANG Jun. A review for dynamics in neuron and neuronal network[J]. Nonlinear Dynamics, 2017, 89(3): 1569–1578. doi: 10.1007/s11071-017-3565-3
    阮秀凱, 張志涌. 基于連續(xù)Hopfield型神經(jīng)網(wǎng)絡(luò)的QAM信號盲檢測[J]. 電子與信息學(xué)報, 2011, 33(7): 1600–1605. doi: 10.3724/SP.J.1146.2010.01271

    RUAN Xiukai and ZHANG Zhiyong. Blind detection of QAM signals using continuous Hopfield-type neural network[J]. Journal of Electronics &Information Technology, 2011, 33(7): 1600–1605. doi: 10.3724/SP.J.1146.2010.01271
    HILLAR C J and TRAN N M. Robust exponential memory in Hopfield networks[J]. The Journal of Mathematical Neuroscience, 2018, 8: 1–20. doi: 10.1186/s13408-017-0056-2
    王春華, 藺海榮, 孫晶如, 等. 基于憶阻器的混沌、存儲器及神經(jīng)網(wǎng)絡(luò)電路研究進展[J]. 電子與信息學(xué)報, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
    NJITACKE Z T and KENGNE J. Complex dynamics of a 4D Hopfield Neural Networks (HNNs) with a nonlinear synaptic weight: Coexistence of multiple attractors and remerging Feigenbaum trees[J]. AEU-International Journal of Electronics and Communications, 2018, 93: 242–252. doi: 10.1016/j.aeue.2018.06.025
    DANCA M F and KUZNETSOV N. Hidden chaotic sets in a Hopfield neural system[J]. Chaos, Solitons & Fractals, 2017, 103: 144–150. doi: 10.1016/j.chaos.2017.06.002
    RAJAGOPAL K, MUNOZ-PACHECO J M, PHAM V T, et al. A Hopfield neural network with multiple attractors and its FPGA design[J]. The European Physical Journal Special Topics, 2018, 227(7/9): 811–820. doi: 10.1140/epjst/e2018-800018-7
    BAO Bocheng, CHEN Chengjie, BAO Han, et al. Dynamical effects of neuron activation gradient on Hopfield neural network: Numerical analyses and hardware experiments[J]. International Journal of Bifurcation and Chaos, 2019, 29(4): 1930010. doi: 10.1142/S0218127419300106
    NJITACKE Z T, KENGNE J, FOZIN T F, et al. Dynamical analysis of a novel 4-neurons based Hopfield neural network: emergences of antimonotonicity and coexistence of multiple stable states[J]. International Journal of Dynamics and Control, 2019, 7(3): 823–841. doi: 10.1007/s40435-019-00509-w
    劉益春, 林亞, 王中強, 等. 氧化物基憶阻型神經(jīng)突觸器件[J]. 物理學(xué)報, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262

    LIU Yichun, LIN Ya, WANG Zhongqiang, et al. Oxide-based memristive neuromorphic synaptic devices[J]. Acta Physica Sinica, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    PHAM V T, JAFARI S, VAIDYANATHAN S, et al. A novel memristive neural network with hidden attractors and its circuitry implementation[J]. Science China Technological Sciences, 2016, 59(3): 358–363. doi: 10.1007/s11431-015-5981-2
    BAO Bocheng, QIAN Hui, XU Quan, et al. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network[J]. Frontiers in Computational Neuroscience, 2017, 11: No. 81, 1–14. doi: 10.3389/fncom.2017.00081
    HU Xiaoyu, LIU Chongxin, LIU Ling, et al. Chaotic dynamics in a neural network under electromagnetic radiation[J]. Nonlinear Dynamics, 2018, 91(3): 1541–1554. doi: 10.1007/s11071-017-3963-6
    LIN Hairong and WANG Chunhua. Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network[J]. Applied Mathematics and Computation, 2020, 369: 124840. doi: 10.1016/j.amc.2019.124840
    BAO Han, HU Aihuang, LIU Wenbo, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2): 502–511. doi: 10.1109/TNNLS.2019.2905137
    XU Fei, ZHANG Jiqian, JIN Meng, et al. Chimera states and synchronization behavior in multilayer memristive neural networks[J]. Nonlinear Dynamics, 2018, 94(2): 775–783. doi: 10.1007/s11071-018-4393-9
    BAO Han, LIU Wenbo, and HU Aihuang. Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction[J]. Nonlinear Dynamics, 2019, 95(1): 43–56. doi: 10.1007/s11071-018-4549-7
    CHEN Chengjie, CHEN Jingqi, BAO Han, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons[J]. Nonlinear Dynamics, 2019, 95(4): 3385–3399. doi: 10.1007/s11071-019-04762-8
    CHEN Chengjie, BAO Han, CHEN Mo, et al. Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: Numerical simulations and breadboard experiments[J]. AEU-International Journal of Electronics and Communications, 2019, 111: 152894. doi: 10.1016/j.aeue.2019.152894
    BREAKSPEAR M. Dynamic models of large-scale brain activity[J]. Nature Neuroscience, 2017, 20(3): 340–352. doi: 10.1038/nn.4497
    WANG Guangyi, YUAN Fang, CHEN Guanrong, et al. Coexisting multiple attractors and riddled basins of a memristive system[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(1): 013125. doi: 10.1063/1.5004001
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數(shù):  3315
  • HTML全文瀏覽量:  1078
  • PDF下載量:  200
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-11-01
  • 修回日期:  2020-01-20
  • 網(wǎng)絡(luò)出版日期:  2020-03-13
  • 刊出日期:  2020-06-04

目錄

    /

    返回文章
    返回