一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于Dijkstra-ACO混合算法的應(yīng)急疏散路徑動(dòng)態(tài)規(guī)劃

曹祥紅 李欣妍 魏曉鴿 李森 黃夢(mèng)溪 李棟祿

曹祥紅, 李欣妍, 魏曉鴿, 李森, 黃夢(mèng)溪, 李棟祿. 基于Dijkstra-ACO混合算法的應(yīng)急疏散路徑動(dòng)態(tài)規(guī)劃[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1502-1509. doi: 10.11999/JEIT190854
引用本文: 曹祥紅, 李欣妍, 魏曉鴿, 李森, 黃夢(mèng)溪, 李棟祿. 基于Dijkstra-ACO混合算法的應(yīng)急疏散路徑動(dòng)態(tài)規(guī)劃[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1502-1509. doi: 10.11999/JEIT190854
Xianghong CAO, Xinyan LI, Xiaoge WEI, Sen LI, Mengxi HUANG, Donglu LI. Dynamic Programming of Emergency Evacuation Path Based on Dijkstra-ACO Hybrid Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1502-1509. doi: 10.11999/JEIT190854
Citation: Xianghong CAO, Xinyan LI, Xiaoge WEI, Sen LI, Mengxi HUANG, Donglu LI. Dynamic Programming of Emergency Evacuation Path Based on Dijkstra-ACO Hybrid Algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1502-1509. doi: 10.11999/JEIT190854

基于Dijkstra-ACO混合算法的應(yīng)急疏散路徑動(dòng)態(tài)規(guī)劃

doi: 10.11999/JEIT190854 cstr: 32379.14.JEIT190854
基金項(xiàng)目: 河南省科技攻關(guān)項(xiàng)目“高層住宅建筑家庭集聚疏散行為的實(shí)驗(yàn)與模擬研究”(172102310670)
詳細(xì)信息
    作者簡(jiǎn)介:

    曹祥紅:女,1972年生,副教授,研究方向?yàn)榻ㄖ姎夤?jié)能技術(shù)、智能照明控制技術(shù)、智能供配電技術(shù)

    李欣妍:女,1994年生,碩士生,研究方向?yàn)橹悄苷彰骺刂萍夹g(shù)

    魏曉鴿:女,1987年生,講師,研究方向?yàn)榻ㄖ茖W(xué)與工程、安全科學(xué)與災(zāi)害防治

    李森:男,1987年生,講師,研究方向?yàn)榻ㄖ茖W(xué)與工程、安全科學(xué)與災(zāi)害防治

    黃夢(mèng)溪:女,1995年生,碩士生,研究方向?yàn)榻ㄖ姎夤?jié)能技術(shù)

    李棟祿:男,1994年生,碩士生,研究方向?yàn)橹悄芄┡潆娂夹g(shù)

    通訊作者:

    曹祥紅 caoxhong@zzuli.edu.cn

  • 中圖分類號(hào): TP312

Dynamic Programming of Emergency Evacuation Path Based on Dijkstra-ACO Hybrid Algorithm

Funds: The Science and Technology in Henan Province Project “An Experimental and Simulated Study on Family Agglomeration and Evacuation Behavior in High-rise Residential Buildings” (172102310670)
  • 摘要:

    現(xiàn)代建筑設(shè)計(jì)趨于多樣化,內(nèi)部結(jié)構(gòu)和功能越來越復(fù)雜,而傳統(tǒng)疏散系統(tǒng)逃生指示方向固定、人員疏散時(shí)間較長(zhǎng),火災(zāi)發(fā)生時(shí),不能夠及時(shí)改變指示方向,易將逃生人員導(dǎo)向危險(xiǎn)區(qū)域,威脅被困人員生命安全。該文提出了一種Dijkstra-ACO混合路徑動(dòng)態(tài)規(guī)劃算法,在Dijkstra算法獲得全局最優(yōu)路徑的基礎(chǔ)上再采用蟻群優(yōu)化(ACO)算法對(duì)每個(gè)節(jié)點(diǎn)進(jìn)一步優(yōu)化以獲取最優(yōu)路徑,并節(jié)省算法運(yùn)行時(shí)間。通過實(shí)驗(yàn)仿真驗(yàn)證了混合算法的有效性,能夠根據(jù)起火點(diǎn)動(dòng)態(tài)規(guī)劃疏散路徑,及時(shí)調(diào)整疏散指示方向,為火場(chǎng)中人員疏散逃生贏得寶貴時(shí)間。

  • 圖  1  應(yīng)急疏散環(huán)境模型

    圖  2  Dijkstra-ACO混合算法流程圖

    圖  3  Dijkstra算法仿真結(jié)果

    圖  4  ACO算法仿真結(jié)果

    圖  5  Dijkstra-ACO混合算法仿真結(jié)果

    圖  6  Dijkstra-GA混合算法仿真結(jié)果

    圖  7  假設(shè)著火點(diǎn)位置混合算法仿真結(jié)果

    表  1  4種算法仿真結(jié)果

    DijkstraACODijkstra-ACO混合算法Dijkstra-GA混合算法
    運(yùn)行時(shí)間(s)0.23719.8041.1755.134
    最短路徑(m)41.681336.384833.804335.9051
    下載: 導(dǎo)出CSV
  • 十一屆全國(guó)人大常委會(huì)第二十一次會(huì)議舉行第二次全體會(huì)議聽取關(guān)于消防工作情況的報(bào)告[J]. 中國(guó)消防, 2011(13): 4–5.

    The 21st meeting of the Standing Committee of the 11th National People's Congress holds the second plenary session to hear a report on the work of fire protection[J]. China Fire, 2011(13): 4–5.
    雷春英. 基于改進(jìn)蟻群算法的火災(zāi)疏散路徑優(yōu)化研究[D]. [碩士論文], 武漢理工大學(xué), 2014.

    LEI Chunying. Route optimization of fire evacuation based on improved ant colony algorithm[D]. [Master dissertation], Wuhan University of Technology, 2014.
    于振中, 李強(qiáng), 樊啟高. 智能仿生算法在移動(dòng)機(jī)器人路徑規(guī)劃優(yōu)化中的應(yīng)用綜述[J]. 計(jì)算機(jī)應(yīng)用研究, 2019, 36(11): 3210–3219. doi: 10.19734/j.issn.1001-3695.2018.07.0483

    YU Zhenzhong, LI Qiang, and FAN Qigao. Survey on application of bioinspired intelligent algorithms in path planning optimization of mobile robots[J]. Application Research of Computers, 2019, 36(11): 3210–3219. doi: 10.19734/j.issn.1001-3695.2018.07.0483
    楊雁瑩, 徐仙偉, 曹霽. 基于仿生理論的新型優(yōu)化算法綜述[J]. 計(jì)算機(jī)仿真, 2016, 33(6): 233–237, 293. doi: 10.3969/j.issn.1006-9348.2016.06.051

    YANG Yanying, XU Xianwei, and CAO Ji. Overview of new optimization algorithms based on bionic theory[J]. Computer Simulation, 2016, 33(6): 233–237, 293. doi: 10.3969/j.issn.1006-9348.2016.06.051
    何夢(mèng)男, 付瑜玲, 陳誠(chéng), 等. 基于元胞自動(dòng)機(jī)的應(yīng)急疏散最短路徑優(yōu)化算法[J]. 中國(guó)安全科學(xué)學(xué)報(bào), 2019, 29(4): 51–57. doi: 10.16265/j.cnki.issn1003-3033.2019.04.009

    HE Mengnan, FU Yuling, CHEN Cheng, et al. Shortest path optimal algorithm for emergency evacuation based on cellular automata[J]. China Safety Science Journal, 2019, 29(4): 51–57. doi: 10.16265/j.cnki.issn1003-3033.2019.04.009
    任偉建, 左方晨, 黃麗杰. 基于GIS的Dijkstra算法改進(jìn)研究[J]. 控制工程, 2018, 25(2): 188–191. doi: 10.14107/j.cnki.kzgc.150340

    REN Weijian, ZUO Fangchen, and HUANG Lijie. The improvement research of Dijkstra algorithm based on GIS[J]. Control Engineering of China, 2018, 25(2): 188–191. doi: 10.14107/j.cnki.kzgc.150340
    張銀鈴, 牛小梅. 蟻群算法在移動(dòng)機(jī)器人路徑規(guī)劃中的仿真研究[J]. 計(jì)算機(jī)仿真, 2011, 28(6): 231–234. doi: 10.3969/j.issn.1006-9348.2011.06.057

    ZHANG Yinling and NIU Xiaomei. Simulation research on mobile robot path planning based on ant colony optimization[J]. Computer Simulation, 2011, 28(6): 231–234. doi: 10.3969/j.issn.1006-9348.2011.06.057
    陳月云, 簡(jiǎn)榮靈, 趙庸旭. 基于快速群體智能算法的毫米波天線設(shè)計(jì)[J]. 電子與信息學(xué)報(bào), 2018, 40(2): 493–499. doi: 10.11999/JEIT170455

    CHEN Yueyun, JIAN Rongling, and ZHAO Yongxu. Millimeter wave antenna design based on fast swarm intelligence algorithm[J]. Journal of Electronics &Information Technology, 2018, 40(2): 493–499. doi: 10.11999/JEIT170455
    王晨旸, 張玉茹. 對(duì)基本蟻群算法的改進(jìn)及其在TSP中的應(yīng)用[J]. 哈爾濱商業(yè)大學(xué)學(xué)報(bào): 自然科學(xué)版, 2017, 33(5): 561–564.

    WANG Chenyang and ZHANG Yuru. Improvement of basic ant colony algorithm and its application in TSP[J]. Journal of Harbin University of Commerce:Natural Sciences Edition, 2017, 33(5): 561–564.
    齊茁. 建筑火災(zāi)中人員疏散自適應(yīng)蟻群算法的研究[D]. [碩士論文], 沈陽航空航天大學(xué), 2011.

    QI Zhuo. Adaptive ant colony algorithm based on evacuation in building fire[D]. [Master dissertation], Shenyang Aerospace University, 2011.
    陳超, 張莉. 基于改進(jìn)蟻群算法的三維路徑規(guī)劃[J]. 計(jì)算機(jī)工程與應(yīng)用, 2019, 55(20): 192–196. doi: 10.3778/j.issn.1002-8331.1904-0212

    CHEN Chao and ZHANG Li. Three-dimensional path planning based on improved ant colony algorithm[J]. Computer Engineering and Applications, 2019, 55(20): 192–196. doi: 10.3778/j.issn.1002-8331.1904-0212
    熊沂鋮, 王棟. 基于蟻群算法的車輛路徑問題研究[J]. 信息技術(shù), 2019(7): 15–17, 23.

    XIONG Yicheng and WANG Dong. Vehicle routing problem based on ant colony algorithm[J]. Information Technology, 2019(7): 15–17, 23.
    段鵬飛. 面向校園疏散的均衡模型與疏導(dǎo)優(yōu)化方法研究[D]. [博士論文], 武漢理工大學(xué), 2013.

    DUAN Pengfei. Research on equilibrium model and optimization method for campus evacuation[D]. [Ph. D. dissertation], Wuhan University of Technology, 2013.
    楊桂華, 符士賓, 劉志毅, 等. 基于改進(jìn)蟻群算法的室內(nèi)移動(dòng)機(jī)器人路徑規(guī)劃[J]. 科學(xué)技術(shù)與工程, 2019, 19(19): 175–179.

    YANG Guihua, FU Shibin, LIU Zhiyi, et al. Path planning of indoor mobile robot based on improved ant colony algorithm[J]. Science Technology and Engineering, 2019, 19(19): 175–179.
    溫正. 精通MATLAB科學(xué)計(jì)算[M]. 北京: 清華大學(xué)出版社, 2015: 55–59.

    WEN Zheng. Proficient in MATLAB Scientific Computing[M]. Beijing: Tsinghua University Press, 2015: 55–59.
    王輝, 朱龍彪, 王景良, 等. 基于Dijkstra-蟻群算法的泊車系統(tǒng)路徑規(guī)劃研究[J]. 工程設(shè)計(jì)學(xué)報(bào), 2016, 23(5): 489–496. doi: 10.3785/j.issn.1006-754X.2016.05.012

    WANG Hui, ZHU Longbiao, WANG Jingliang, et al. Research on path planing of parking system based on Dijkstra-ant colony hybrid algorithm[J]. Chinese Journal of Engineering Design, 2016, 23(5): 489–496. doi: 10.3785/j.issn.1006-754X.2016.05.012
    石曉達(dá), 孫連英, 葛娜, 等. 應(yīng)急資源配送中Dijkstra改進(jìn)算法的研究[J]. 北京聯(lián)合大學(xué)學(xué)報(bào), 2018, 32(2): 61–66. doi: 10.16255/j.cnki.ldxbz.2018.02.011

    SHI Xiaoda, SUN Lianying, GE Na, et al. Research on the improved algorithm of Dijkstra in emergency resource distribution[J]. Journal of Beijing Union University, 2018, 32(2): 61–66. doi: 10.16255/j.cnki.ldxbz.2018.02.011
    WANG Han, ZHANG Hongjun, WANG Kun, et al. Off-road path planning based on improved ant colony algorithm[J]. Wireless Personal Communications, 2018, 102(2): 1705–1721. doi: 10.1007/s11277-017-5229-5
    DENTLER J, ROSALIE M, DANOY G, et al. Collision avoidance effects on the mobility of a UAV swarm using chaotic ant colony with model predictive control[J]. Journal of Intelligent & Robotic Systems, 2018, 93(1/2): 227–243. doi: 10.1007/s10846-018-0822-8
    CHEN Zhiping, LI Zhijun, LIU Zhen, et al. The research and application of improved ant colony algorithm with multi-thresholds in edge detection[C]. International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration, Wuhan, China, 2017: 5–9. doi: 10.1109/ICIICII.2017.27.
    CHIN W, SAPUTRA A A, and KUBOTA N. A neuro-based network for on-line topological map building and dynamic path planning[C]. 2017 International Joint Conference on Neural Networks, Anchorage, USA, 2017: 2805–2810. doi: 10.1109/IJCNN.2017.7966202.
    YAO Baozhen, CHEN Chao, SONG Xiaolin, et al. Fresh seafood delivery routing problem using an improved ant colony optimization[J]. Annals of Operations Research, 2017, 273(1/2): 163–185. doi: 10.1007/s10479-017-2531-2
    FATHI M, RODRíGUEZ V, and ALVAREZ M J. A novel memetic ant colony optimization-based heuristic algorithm for solving the assembly line part feeding problem[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(1/4): 629–643. doi: 10.1007/s00170-014-6068-0
    DU Baigang and GUO Shunsheng. Production planning conflict resolution of complex product system in group manufacturing: A novel hybrid approach using ant colony optimization and Shapley value[J]. Computers & Industrial Engineering, 2016, 94: 158–169. doi: 10.1016/j.cie.2015.12.015
    張勇, 高鑫鑫, 王昱潔. 基于SFLA-GA混合算法求解時(shí)間最優(yōu)的旅行商問題[J]. 電子與信息學(xué)報(bào), 2018, 40(2): 363–370. doi: 10.11999/JEIT170484

    ZHANG Yong, GAO Xinxin, and WANG Yujie. Solving the time optimal traveling salesman problem based on hybrid shuffled frog leaping algorithm-genetic algorithm[J]. Journal of Electronics &Information Technology, 2018, 40(2): 363–370. doi: 10.11999/JEIT170484
  • 加載中
圖(7) / 表(1)
計(jì)量
  • 文章訪問數(shù):  3972
  • HTML全文瀏覽量:  1781
  • PDF下載量:  165
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-11-01
  • 修回日期:  2020-05-08
  • 網(wǎng)絡(luò)出版日期:  2020-05-17
  • 刊出日期:  2020-06-22

目錄

    /

    返回文章
    返回