一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

密碼產(chǎn)品的側(cè)信道分析與評估

陳華 習(xí)偉 范麗敏 焦志鵬 馮婧怡

陳華, 習(xí)偉, 范麗敏, 焦志鵬, 馮婧怡. 密碼產(chǎn)品的側(cè)信道分析與評估[J]. 電子與信息學(xué)報, 2020, 42(8): 1836-1845. doi: 10.11999/JEIT190853
引用本文: 陳華, 習(xí)偉, 范麗敏, 焦志鵬, 馮婧怡. 密碼產(chǎn)品的側(cè)信道分析與評估[J]. 電子與信息學(xué)報, 2020, 42(8): 1836-1845. doi: 10.11999/JEIT190853
Hua CHEN, Wei XI, Limin FAN, Zhipeng JIAO, Jingyi FENG. Side Channel Analysis and Evaluation on Cryptographic Products[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1836-1845. doi: 10.11999/JEIT190853
Citation: Hua CHEN, Wei XI, Limin FAN, Zhipeng JIAO, Jingyi FENG. Side Channel Analysis and Evaluation on Cryptographic Products[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1836-1845. doi: 10.11999/JEIT190853

密碼產(chǎn)品的側(cè)信道分析與評估

doi: 10.11999/JEIT190853 cstr: 32379.14.JEIT190853
基金項目: 國家重點研發(fā)計劃(2018YFB0904900, 2018YFB0904901),十三五國家密碼發(fā)展基金(MMJJ20170214, MMJJ20170211)
詳細(xì)信息
    作者簡介:

    陳華:女,1976年生,正高級工程師,博士生導(dǎo)師,研究方向為側(cè)信道分析與防護、密碼檢測

    習(xí)偉:男,1980年生,高級工程師,研究方向為智能電網(wǎng)與電力芯片

    范麗敏:女,1978年生,高級工程師,碩士生導(dǎo)師,研究方向為側(cè)信道分析與防護、密碼檢測

    焦志鵬:男,1992年生,博士生,研究方向為側(cè)信道分析與防護

    馮婧怡:女,1991年生,博士生,研究方向為側(cè)信道分析與防護

    通訊作者:

    陳華 chenhua@tca.iscas.ac.cn

  • 中圖分類號: TN918; TP309

Side Channel Analysis and Evaluation on Cryptographic Products

Funds: The National Key R&D Program of China (2018YFB0904900, 2018YFB0904901), The National Cryptography Development Fund of China (MMJJ20170214, MMJJ20170211)
  • 摘要: 作為一類重要的信息安全產(chǎn)品,密碼產(chǎn)品中所使用的密碼技術(shù)保障了信息的保密性、完整性和不可抵賴性。而側(cè)信道攻擊是針對密碼產(chǎn)品的一類重要的安全威脅,它主要利用了密碼算法運算過程中側(cè)信息(如時間、功耗等)的泄露,通過分析側(cè)信息與秘密信息的依賴關(guān)系進行攻擊。對密碼產(chǎn)品的抗側(cè)信道攻擊能力進行評估已成為密碼測評的重要內(nèi)容。該文從攻擊性測試、通用評估以及形式化驗證3個角度介紹了目前密碼產(chǎn)品抗側(cè)信道評估的發(fā)展情況。其中攻擊性測試是目前密碼側(cè)信道測評所采用的最主要的評估方式,它通過執(zhí)行具體的攻擊流程來恢復(fù)密鑰等秘密信息。后兩種方式不以恢復(fù)秘密信息等為目的,而是側(cè)重于評估密碼實現(xiàn)是否存在側(cè)信息泄露。與攻擊性測試相比,它們無需評估人員深入了解具體的攻擊流程和實現(xiàn)細(xì)節(jié),因此通用性更強。通用評估是以統(tǒng)計測試、信息熵計算等方式去刻畫信息泄露的程度,如目前被廣泛采用的測試向量泄露評估(TVLA)技術(shù)。利用形式化方法對側(cè)信道防護策略有效性進行評估是一個新的發(fā)展方向,其優(yōu)勢是可以自動化/半自動化地評估密碼實現(xiàn)是否存在側(cè)信道攻擊弱點。該文介紹了目前針對軟件掩碼、硬件掩碼、故障防護等不同防護策略的形式化驗證最新成果,主要包括基于程序驗證、類型推導(dǎo)及模型計數(shù)等不同方法。
  • 表  1  密碼測評標(biāo)準(zhǔn)中的抗側(cè)信道防護要求比較

    測評標(biāo)準(zhǔn)FIPS140~3(1~4級)GM/T0028(1~4級)GM/T0008(1~3級)
    非侵入/半侵入式能量1~4級1~4級2~3級
    計時1~4級1~4級2~3級
    電磁1~4級1~4級2~3級
    溫度3~4級3~4級2~3級
    電壓3~4級3~4級2~3級
    錯誤注入4級4級3級
    侵入式2~4級2~4級2~3級
    下載: 導(dǎo)出CSV

    表  2  能量攻擊防護方案通用評估方法對比

    評估方法優(yōu)點缺點
    TVLA簡單高效低噪聲情況下以及泄露信息分布在多個統(tǒng)計距情況下不適用
    χ2-test有效彌補TVLA的不足,在低噪聲以及泄露信息
    分布在多個統(tǒng)計距的情況下仍然適用
    在信噪比較低的情況下,效率較低
    DL-LA無需預(yù)處理,更低的誤報率存在概率適應(yīng)性以及過擬合等問題
    下載: 導(dǎo)出CSV

    表  3  3種評估方法對比

    評估方法優(yōu)點缺點適用場景
    側(cè)信道攻擊測評評估思路簡單直接:利用現(xiàn)有攻擊逐一嘗試,攻擊成功則不通過,失敗則為通過由于攻擊方法繁多,實現(xiàn)繁瑣,評估周期長,同時難以保障評估的完備性符合攻擊條件的側(cè)信道泄露場景,也可作為其它評估技術(shù)的驗證
    基于信息泄露的通用評估評估實現(xiàn)簡單,評估結(jié)果可提供一定的理論安全依據(jù)評估的準(zhǔn)確度和解釋性有待提高與增強可單獨作為評估技術(shù)使用,也可作為攻擊測評中側(cè)信息泄露點定位工具
    形式化驗證技術(shù)可為防護實現(xiàn)提供安全性的理論評估,自動化程度高實現(xiàn)代價大,評估效率較低可作為可證明安全防護設(shè)計方案的驗證工具
    下載: 導(dǎo)出CSV
  • KOCHER P C. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems[C]. The 16th Annual International Cryptology Conference Santa Barbara on Advances in Cryptology, Santa Barbara, USA, 1996: 104–113. doi: 10.1007/3-540-68697-5_9.
    KOCHER P, JAFFE J, and JUN B. Differential power analysis[C]. The 19th Annual International Cryptology Conference Santa Barbara on Advances in Cryptology, Santa Barbara, USA, 1999: 388–397. doi: 10.1007/3-540-48405-1_25.
    GANDOLFI K, MOURTEL C, and OLIVIER F. Electromagnetic analysis: Concrete results[C]. The 3rd International Workshop Paris on Cryptographic Hardware and Embedded Systems, Paris, France, 2001: 251–261. doi: 10.1007/3-540-44709-1_21.
    BONEH D, DEMILLO R A, and LIPTON R J. On the importance of checking cryptographic protocols for faults[C]. International Conference on the Theory and Application of Cryptographic Techniques Konstanz on Advances in Cryptology, Konstanz, Germany, 1997: 37–51. doi: 10.1007/3-540-69053-0_4.
    MANGARD S, OSWALD E, POPP T. 馮登國, 周永彬, 劉繼業(yè), 等譯. 能量分析攻擊[M]. 北京: 科學(xué)出版社, 2010: 3–4, 49–50.

    MANGARD S, OSWALD E, and POPP T. FENG Dengguo, ZHOU Yongbin, LIU Jiye, et al. translation. Power Analysis Attacks[M]. Beijing: Science Press, 2010: 3–4, 49–50.
    NIST. FIPS 140–3 Security requirements for cryptographic modules[S]. NIST, 2019.
    ISO/IEC 19790: 2012. Information technology-security techniques-security requirements for cryptographic modules[S]. 2012.
    State Cryptography Administration. GM/T 0028–2014 Cryptography module security technical requirements[S]. Beijing: China Standard Press, 2014.
    國家密碼管理局. GM/T 0008–2012 安全芯片密碼檢測準(zhǔn)則[S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2012.

    State Cryptography Administration. GM/T 0008–2012 Cryptography test criteria for security IC[S]. Beijing: China Standard Press, 2012.
    BRIER E, CLAVIER C, and OLIVIER F. Correlation power analysis with a leakage mode[C]. The 6th International Workshop Cambridge on Cryptographic Hardware and Embedded Systems, Cambridge, USA, 2004: 16–29. doi: 10.1007/978-3-540-28632-5_2.
    GIERLICHS B, BATINA L, TUYLS P, et al. Mutual information analysis[C]. The 10th International Workshop on Cryptographic Hardware and Embedded Systems, Washington, USA, 2008: 426–442. doi: 10.1007/978-3-540-85053-3_27.
    CHARI S, RAO J R, and ROHATGI P. Template attacks[C]. The 4th International Workshop Redwood Shores on Cryptographic Hardware and Embedded Systems, Redwood City, USA, 2002: 13–28. doi: 10.1007/3-540-36400-5_3.
    HOSPODAR G, GIERLICHS B, DE MULDER E, et al. Machine learning in side-channel analysis: A first study[J]. Journal of Cryptographic Engineering, 2011, 1(4): 293. doi: 10.1007/s13389-011-0023-x
    LERMAN L, BONTEMPI G, and MARKOWITCH O. A machine learning approach against a masked AES[J]. Journal of Cryptographic Engineering, 2015, 5(2): 123–139. doi: 10.1007/s13389-014-0089-3
    MAGHREBI H, PORTIGLIATTI T, and PROUFF E. Breaking cryptographic implementations using deep learning techniques[C]. The 6th International Conference on Security, Privacy, and Applied Cryptography Engineering, Hyderabad, India, 2016: 3–26. doi: 10.1007/978-3-319-49445-6_1.
    TIMON B. Non-profiled deep learning-based side-channel attacks with sensitivity analysis[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019(2): 107–131.
    BIHAM E and SHAMIR A. Differential fault analysis of secret key cryptosystems[C]. The 17th Annual International Cryptology Conference Santa Barbara on Advances in Cryptology, Santa Barbara, USA, 1997: 513–525. doi: 10.1007/BFb0052259.
    BIEHL I, MEYER B, and MüLLER V. Differential fault attacks on elliptic curve cryptosystems[C]. The 20th Annual International Cryptology Conference Santa Barbara on Advances in Cryptology, Santa Barbara, USA, 2000: 131–146. doi: 10.1007/3-540-44598-6_8.
    SCHMIDT J M and MEDWED M. A fault attack on ECDSA[C]. The 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography, Lausanne, Switzerland, 2009: 93–99. doi: 10.1109/FDTC.2009.38.
    GOODWILL G, JUN B, JAFFE J, et al. A testing methodology for side-channel resistance validation[C]. NIST Non-Invasive Attack Testing Workshop, Nara, Japan, 2011: 115–136.
    BECKER G, COOPER J, DEMULDER E, et al. Test Vector Leakage Assessment (TVLA) methodology in practice[C]. International Cryptographic Module Conference, Gaithersburg, USA, 2013: 13.
    DING A A, CHEN Cong, and EISENBARTH T. Simpler, faster, and more robust t-test based leakage detection[C]. The 7th International Workshop on Constructive Side, Graz, Austria, 2016: 163–183. doi: 10.1007/978-3-319-43283-0_10.
    MORADI A, RICHTER B, SCHNEIDER T, et al. Leakage detection with the X2-test[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018(1): 209–237. doi: 10.13154/tches.v2018.i1.209-237
    WEGENER F, MOOS T, and MORADI A. DL-LA: Deep learning leakage assessment[J]. IACR Cryptology ePrint Archive, 2019. https://eprint.iacr.org/2019/505.pdf.
    SAKIYAMA K, LI YANG, IWAMOTO M, et al. Information-theoretic approach to optimal differential fault analysis[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(1): 109–120. doi: 10.1109/TIFS.2011.2174984
    BERTONI G, BREVEGLIERI L, KOREN I, et al. Error analysis and detection procedures for a hardware implementation of the advanced encryption standard[J]. IEEE Transactions on Computers, 2003, 52(4): 492–505. doi: 10.1109/tc.2003.1190590
    JOYE M, MANET P, and RIGAUD J B. Strengthening hardware AES implementations against fault attacks[J]. IET Information Security, 2007, 1(3): 106–110. doi: 10.1049/iet-ifs:20060163
    GHOSH S, SAHA D, SENGUPTA A, et al. Preventing fault attacks using fault randomization with a case study on AES[C]. The 20th Australasian Conference on Information Security and Privacy, Brisbane, Australia, 2015: 343–355. doi: 10.1007/978-3-319-19962-7_20.
    TUPSAMUDRE H, BISHT S, and MUKHOPADHYAY D. Destroying fault invariant with randomization[C]. The 16th International Workshop on Cryptographic Hardware and Embedded Systems, Busan, Korea, 2014: 93–111. doi: 10.1007/978-3-662-44709-3_6.
    FENG Jingyi, CHEN Hua, LI Yang, et al. A framework for evaluation and analysis on infection countermeasures against fault attacks[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 391–406. doi: 10.1109/TIFS.2019.2903653
    GOUBIN L and PATARIN J. DES and differential power analysis the “duplication” method[C]. The 1st International Workshop on Cryptographic Hardware and Embedded Systems, Worcester, USA, 1999: 158–172. doi: 10.1007/3-540-48059-5_15.
    BAYRAK A G, REGAZZONI F, NOVO D, et al. Sleuth: Automated verification of software power analysis countermeasures[C]. The 15th International Workshop on Cryptographic Hardware and Embedded Systems, Santa Barbara, USA, 2013: 293–310. doi: 10.1007/978-3-642-40349-1_17.
    BARTHE G, BELA?D S, DUPRESSOIR F, et al. Strong non-interference and type-directed higher-order masking[C]. The 2016 ACM SIGSAC Conference on Computer and Communications Security, New York, USA, 2016: 116–129. doi: 10.1145/2976749.2978427.
    BARTHE G, BELA?D S, DUPRESSOIR F, et al. Verified proofs of higher-order masking[C]. The 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology, Sofia, Bulgaria, 2015: 457–485. doi: 10.1007/978-3-662-46800-5_18.
    CORON J S. Formal verification of side-channel countermeasures via elementary circuit transformations[C]. The 16th International Conference on Applied Cryptography and Network Security, Leuven, Belgium, 2018: 65–82. doi: 10.1007/978-3-319-93387-0_4.
    EL OUAHMA I B, MEUNIER Q L, HEYDEMANN K, et al. Side-channel robustness analysis of masked assembly codes using a symbolic approach[J]. Journal of Cryptographic Engineering, 2019, 9(3): 231–242. doi: 10.1007/s13389-019-00205-7
    ELDIB H, WANG Chao, and SCHAUMONT P. Formal verification of software countermeasures against side-channel attacks[J]. ACM Transactions on Software Engineering and Methodology, 2014, 24(2): 1–24. doi: 10.1145/2685616
    ELDIB H, WANG Chao, and SCHAUMONT P. SMT-based verification of software countermeasures against side-channel attacks[C]. The 20th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Grenoble, France, 2014: 62–77. doi: 10.1007/978-3-642-54862-8_5.
    ZHANG Jun, GAO Pengfei, SONG Fu, et al. SCINFER: Refinement-based verification of software countermeasures against side-channel attacks[C]. The 30th International Conference on Computer Aided Verification, Oxford, England, 2018: 157–177. doi: 10.1007/978-3-319-96142-2_12.
    BERTONI G and MARTINOLI M. A methodology for the characterisation of leakages in combinatorial logic[C]. The 6th International Conference on Security, Privacy, and Applied Cryptography Engineering, Hyderabad, India, 2016: 363–382. doi: 10.1007/978-3-319-49445-6_21.
    BLOEM R, GROSS H, IUSUPOV R, et al. Formal verification of masked hardware implementations in the presence of glitches[C]. The 37th Advances in Cryptology, Tel Aviv, Israel, 2018: 321–353. doi: 10.1007/978-3-319-78375-8_11.
    GOUBET L, HEYDEMANN K, ENCRENAZ E, et al. Efficient design and evaluation of countermeasures against fault attacks using formal verification[C]. The 14th International Conference on Smart Card Research and Advanced Applications, Bochum, Germany, 2015: 177–192. doi: 10.1007/978-3-319-31271-2_11.
  • 加載中
表(3)
計量
  • 文章訪問數(shù):  2743
  • HTML全文瀏覽量:  1908
  • PDF下載量:  291
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-11-01
  • 修回日期:  2020-06-05
  • 網(wǎng)絡(luò)出版日期:  2020-07-07
  • 刊出日期:  2020-08-18

目錄

    /

    返回文章
    返回