一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

DNA數(shù)據(jù)存儲(chǔ)

毛秀海 李凡 左小磊

毛秀海, 李凡, 左小磊. DNA數(shù)據(jù)存儲(chǔ)[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1303-1312. doi: 10.11999/JEIT190852
引用本文: 毛秀海, 李凡, 左小磊. DNA數(shù)據(jù)存儲(chǔ)[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1303-1312. doi: 10.11999/JEIT190852
Xiuhai MAO, Fan LI, Xiaolei ZUO. DNA Data Storage[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1303-1312. doi: 10.11999/JEIT190852
Citation: Xiuhai MAO, Fan LI, Xiaolei ZUO. DNA Data Storage[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1303-1312. doi: 10.11999/JEIT190852

DNA數(shù)據(jù)存儲(chǔ)

doi: 10.11999/JEIT190852 cstr: 32379.14.JEIT190852
基金項(xiàng)目: 中國(guó)科學(xué)技術(shù)部國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFA0902600),國(guó)家自然科學(xué)基金(21804019, 21804088),上海市浦江人才計(jì)劃(19PJ1407300)
詳細(xì)信息
    作者簡(jiǎn)介:

    毛秀海:男,1986年生,副研究員,研究方向?yàn)镈NA納米技術(shù)

    李凡:男,1983年生,副研究員,研究方向?yàn)榉肿俞t(yī)學(xué)及DNA納米技術(shù)

    左小磊:男,1980年生,研究員,研究方向?yàn)镈AN電化學(xué)傳感器、3D DNA探針和癌癥早期診斷

    通訊作者:

    左小磊 zuoxiaolei@sjtu.edu.cn

  • 中圖分類號(hào): TP391

DNA Data Storage

Funds: The Ministry of Science and Technology of China (2018YFA0902600), The National Natural Science Foundation of China (21804019, 21804088), Shanghai Pujiang Program (19PJ1407300)
  • 摘要: 分子數(shù)據(jù)存儲(chǔ)作為一種穩(wěn)定性強(qiáng)、存儲(chǔ)密度高的數(shù)據(jù)存儲(chǔ)方式,表現(xiàn)出巨大的潛力。它有望解決當(dāng)今日益增長(zhǎng)的巨大信息量與存儲(chǔ)能力之間差距不斷擴(kuò)大的問題。作為一種典型的分子數(shù)據(jù)存儲(chǔ)方式,DNA數(shù)據(jù)存儲(chǔ)可以作為一種替代性、變革性的存儲(chǔ)介質(zhì),用于突破現(xiàn)用存儲(chǔ)方式的物理極限,滿足不斷增加的數(shù)據(jù)存儲(chǔ)需求。該綜述將對(duì)DNA數(shù)據(jù)存儲(chǔ)的歷史、工作流程、及當(dāng)前的發(fā)展?fàn)顟B(tài)進(jìn)行概述,同時(shí)討論現(xiàn)今DNA數(shù)據(jù)存儲(chǔ)存在的問題、挑戰(zhàn)及發(fā)展趨勢(shì)。
  • 圖  1  DNA數(shù)據(jù)存儲(chǔ)整體框架圖

    表  1  體外DNA數(shù)據(jù)存儲(chǔ)比較研究

    文獻(xiàn)數(shù)據(jù)容量合成方法測(cè)序方法物理冗余
    (覆蓋率)
    重新組裝鏈長(zhǎng)
    (堿基數(shù))
    邏輯密度
    (bit/堿基)
    邏輯密度
    (有效載荷)
    是否能
    隨機(jī)訪問
    文獻(xiàn)[31]650 kB亞磷酰胺(沉積)合成測(cè)序3000×索引序列連接1150.600.83
    文獻(xiàn)[32]630 kB亞磷酰胺(沉積)合成測(cè)序51×重疊序列連接1170.190.29
    文獻(xiàn)[17]80 kB亞磷酰胺(電化學(xué))合成測(cè)序372×索引序列連接1580.861.16
    文獻(xiàn)[37,45]3 kB亞磷酰胺(沉積)納米孔測(cè)序200×索引序列連接880~10001.711.74
    文獻(xiàn)[38]2 MB亞磷酰胺(沉積)合成測(cè)序10.5×種子序列連接1521.181.55
    文獻(xiàn)[46]22 MB亞磷酰胺(沉積)合成測(cè)序160×索引序列連接2300.891.08
    文獻(xiàn)[36]150 kB亞磷酰胺(電化學(xué))合成測(cè)序40×索引序列連接1170.570.85
    文獻(xiàn)[12]200 MB亞磷酰胺(沉積)合成測(cè)序索引序列連接150~2000.811.10
    文獻(xiàn)[43]8.5 MB亞磷酰胺(沉積)合成測(cè)序164×索引序列連接1941.942.64
    文獻(xiàn)[44]854 kB亞磷酰胺(柱子)合成測(cè)序250×索引序列連接851.783.37
    文獻(xiàn)[12]33 kB亞磷酰胺(沉積)納米孔測(cè)序36×索引序列連接1500.811.10
    文獻(xiàn)[47]18 B酶(柱基)納米孔測(cè)序175×無(單體)150~2001.571.57
    下載: 導(dǎo)出CSV
  • GANTZ J and REINSEL D. The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far East[R]. IDC iView, 2012: 1–16.
    EXTANCE A. How DNA could store all the world’s data[J]. Nature, 2016, 537(7618): 22–24. doi: 10.1038/537022a
    ZHIRNOV V, ZADEGAN R M, SANDHU G S, et al. Nucleic acid memory[J]. Nature Materials, 2016, 15(4): 366–370. doi: 10.1038/nmat4594
    COLQUHOUN H and LUTZ J F. Information-containing macromolecules[J]. Nature Chemistry, 2014, 6(6): 455–456. doi: 10.1038/nchem.1958
    王君珂, 印玨, 牛人杰, 等. DNA計(jì)算與DNA納米技術(shù)[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1313–1325. doi: 10.11999/JEIT190826.

    WANG Junke, YIN Jue, NIU Renjie, et al. DNA computing and DNA nanotechnology[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1313–1325. doi: 10.11999/JEIT190826.
    許進(jìn), 強(qiáng)小利, 張凱, 等. 基于探針圖的并行型圖頂點(diǎn)著色DNA計(jì)算模型(英文)[J]. 工程, 2018, 4(1): 61–77. doi: 10.1016/j.eng.2018.02.011

    XU Jin, QIANG Xiaoli, ZHANG Kai, et al. A DNA computing model for the graph vertex coloring problem based on a probe graph[J]. Engineering, 2018, 4(1): 61–77. doi: 10.1016/j.eng.2018.02.011
    藍(lán)雯飛, 邢志寶, 黃俊, 等. DNA自組裝計(jì)算模型求解二部圖完美匹配問題[J]. 計(jì)算機(jī)研究與發(fā)展, 2016, 53(11): 2583–2593. doi: 10.7544/issn1000-1239.2016.20150312

    LAN Wenfei, XING Zhibao, HUANG Jun, et al. The DNA self-assembly computing model for solving perfect matching problem of bipartite graph[J]. Journal of Computer Research and Development, 2016, 53(11): 2583–2593. doi: 10.7544/issn1000-1239.2016.20150312
    朱維軍, 周清雷, 張欽憲. 基于DNA計(jì)算的線性時(shí)序邏輯模型檢測(cè)方法[J]. 計(jì)算機(jī)學(xué)報(bào), 2016, 39(12): 2578–2597. doi: 10.11897/SP.J.1016.2016.02578

    ZHU Weijun, ZHOU Qinglei, and ZHANG Qinxian. A LTL model checking approach based on DNA computing[J]. Chinese Journal of Computers, 2016, 39(12): 2578–2597. doi: 10.11897/SP.J.1016.2016.02578
    夏宏, 張實(shí)君. 基于分子計(jì)算的邏輯模型構(gòu)建[J]. 科技通報(bào), 2016, 32(5): 11–15. doi: 10.3969/j.issn.1001-7119.2016.05.003

    XIA Hong and ZHANG Shijun. Constructing the logical model based on molecular computing[J]. Bulletin of Science and Technology, 2016, 32(5): 11–15. doi: 10.3969/j.issn.1001-7119.2016.05.003
    周旭, 周炎濤, 歐陽艾嘉, 等. 一種最大團(tuán)問題的tile自組裝高效模型[J]. 計(jì)算機(jī)研究與發(fā)展, 2014, 51(6): 1253–1262. doi: 10.7544/issn1000-1239.2014.20120904

    ZHOU Xu, ZHOU Yantao, OUYANG Aijia, et al. An efficient tile assembly model for maximum clique problem[J]. Journal of Computer Research and Development, 2014, 51(6): 1253–1262. doi: 10.7544/issn1000-1239.2014.20120904
    周旭, 周炎濤, 李肯立, 等. 基于tile自組裝模型的最大匹配問題算法研究[J]. 電子學(xué)報(bào), 2015, 43(2): 262–268. doi: 10.3969/j.issn.0372-2112.2015.02.009

    ZHOU Xu, ZHOU Yantao, LI Kenli, et al. Efficient maximum matching problem algorithms in the tile assembly model[J]. Acta Electronica Sinica, 2015, 43(2): 262–268. doi: 10.3969/j.issn.0372-2112.2015.02.009
    ORGANICK L, ANG S D, CHEN Y J, et al. Random access in large-scale DNA data storage[J]. Nature Biotechnology, 2018, 36(3): 242–248. doi: 10.1038/nbt.4079
    RUTTEN M G T A, VAANDRAGER F W, ELEMANS J A A W, et al. Encoding information into polymers[J]. Nature Reviews Chemistry, 2018, 2(11): 365–381. doi: 10.1038/s41570-018-0051-5
    DNA to the rescue for data storage[J]. Chemical & Engineering News, 2015, 93(35): 40-41.
    陳為剛, 黃剛, 李炳志, 等. 音視頻文件的DNA信息存儲(chǔ)[J]. 中國(guó)科學(xué): 生命科學(xué), 2020, 50(1): 81–85. doi: 10.1360/SSV-2019-0211

    CHEN Weigang, HUANG Gang, LI Bingzhi, et al. DNA information storage for audio and video files[J]. Scientia Sinica Vitae, 2020, 50(1): 81–85. doi: 10.1360/SSV-2019-0211
    GREENGARD S. Cracking the code on DNA storage[J]. Communications of the ACM, 2017, 60(7): 16–18. doi: 10.1145/3088493
    GRASS R N, HECKEL R, PUDDU M, et al. Robust chemical preservation of digital information on DNA in silica with error-correcting codes[J]. Angewandte Chemie International Edition, 2015, 54(8): 2552–2555. doi: 10.1002/anie.201411378
    LUNT B M. How long is long-term data storage?[C]. Archiving Conference, Society for Imaging Science and Technology, 2011: 29–33.
    SHRIVASTAVA S and BADLANI R. Data storage in DNA[J]. International Journal of Electrical Energy, 2014, 2(2): 119–124.
    GREENBERG A, HAMILTON J, MALTZ D A, et al. The cost of a cloud: Research problems in data center networks[J]. ACM SIGCOMM Computer Communication Review, 2008, 39(1): 68–73. doi: 10.1145/1496091.1496103
    SHETH R U and WANG H H. DNA-based memory devices for recording cellular events[J]. Nature Reviews Genetics, 2018, 19(11): 718–732. doi: 10.1038/s41576-018-0052-8
    WIENER N. Interview: Machines smarter than men[J]. US News World Report, 1964, 56: 84–86.
    NEIMAN M S. On the molecular memory systems and the directed mutations[J]. Radiotekhnika, 1965, 6: 1–8.
    DAVIS J. Microvenus[J]. Art Journal, 1996, 55(1): 70–74. doi: 10.1080/00043249.1996.10791743
    CLELLAND C T, RISCA V, and BANCROFT C. Hiding messages in DNA microdots[J]. Nature, 1999, 399(6736): 533–534. doi: 10.1038/21092
    BANCROFT C, BOWLER T, BLOOM B, et al. Long-term storage of information in DNA[J]. Science, 2001, 293(5536): 1763–1765.
    AILENBERG M and ROTSTEIN O D. An improved huffman coding method for archiving text, images, and music characters in DNA[J]. BioTechniques, 2009, 47(3): 747–754. doi: 10.2144/000113218
    WONG P C, WONG K K, and FOOTE H. Organic data memory using the DNA approach[J]. Communications of the ACM, 2003, 46(1): 95–98. doi: 10.1145/602421.602426
    ARITA M and OHASHI Y. Secret signatures inside genomic DNA[J]. Biotechnology Progress, 2004, 20(5): 1605–1607. doi: 10.1021/bp049917i
    YACHIE N, SEKIYAMA K, SUGAHARA J, et al. Alignment-based approach for durable data storage into living organisms[J]. Biotechnology Progress, 2007, 23(2): 501–505. doi: 10.1021/bp060261y
    CHURCH G M, GAO Yuan, and KOSURI S. Next-generation digital information storage in DNA[J]. Science, 2012, 337(6102): 1628. doi: 10.1126/science.1226355
    GOLDMAN N, BERTONE P, CHEN Siyuan, et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA[J]. Nature, 2013, 494(7435): 77–80. doi: 10.1038/nature11875
    GIBSON D G, GLASS J I, LARTIGUE C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987): 52–56. doi: 10.1126/science.1190719
    HECKEL R, SHOMORONY I, RAMCHANDRAN K, et al. Fundamental limits of DNA storage systems[C]. 2017 IEEE International Symposium on Information Theory, Aachen, Germany, 2017: 3130–3134.
    KOSURI S and CHURCH G M. Large-scale de novo DNA synthesis: Technologies and applications[J]. Nature Methods, 2014, 11(5): 499–507. doi: 10.1038/nmeth.2918
    BORNHOLT J, LOPEZ R, CARMEAN D M, et al. A DNA-based archival storage system[J]. ACM SIGPLAN Notices, 2016, 50(4): 637–649.
    YAZDI S M H T, YUAN Yongbo, MA Jian, et al. A rewritable, random-access DNA-based storage system[J]. Scientific Reports, 2015, 5: 14138. doi: 10.1038/srep14138
    ERLICH Y and ZIELINSKI D. DNA fountain enables a robust and efficient storage architecture[J]. Science, 2017, 355(6328): 950–954. doi: 10.1126/science.aaj2038
    譚麗, 孫季豐, 郭禮華. 基于memetic算法的DNA序列數(shù)據(jù)壓縮方法[J]. 電子與信息學(xué)報(bào), 2014, 36(1): 121–127.

    TAN Li, SUN Jifeng, and GUO Lihua. DNA sequence data compression method based on memetic algorithm[J]. Journal of Electronics &Information Technology, 2014, 36(1): 121–127.
    SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x
    HECKEL R, MIKUTIS G, and GRASS R N. A characterization of the DNA data storage channel[J]. Scientific Reports, 2019, 9(1): 9663. doi: 10.1038/s41598-019-45832-6
    REED I S and SOLOMON G. Polynomial codes over certain finite fields[J]. Journal of the Society for Industrial and Applied Mathematics, 1960, 8(2): 300–304. doi: 10.1137/0108018
    ANAVY L, VAKNIN I, ATAR O, et al. Improved DNA based storage capacity and fidelity using composite DNA letters[J]. bioRxiv, 2018. doi: 10.1101/433524
    CHOI Y, RYU T, LEE A C, et al. Addition of degenerate bases to DNA-based data storage for increased information capacity[J]. bioRxiv, 2018. doi: 10.1101/367052
    YAZDI S M H T, GABRYS R, and MILENKOVIC O. Portable and error-free DNA-based data storage[J]. Scientific Reports, 2017, 7: 5011. doi: 10.1038/s41598-017-05188-1
    BLAWAT M, GAEDKE K, HüTTER I, et al. Forward error correction for DNA data storage[J]. Procedia Computer Science, 2016, 80: 1011–1022. doi: 10.1016/j.procs.2016.05.398
    LEE H H, KALHOR R, GOELA N, et al. Enzymatic DNA synthesis for digital information storage[J]. bioRxiv, 2018. doi: 10.1101/348987
    BAUM E. Building an associative memory vastly larger than the brain[J]. Science, 1995, 268(5210): 583–585. doi: 10.1126/science.7725109
    CARUTHERS M H. The chemical synthesis of DNA/RNA: Our gift to science[J]. Journal of Biological Chemistry, 2013, 288(2): 1420–1427. doi: 10.1074/jbc.X112.442855
    GOODWIN S, MCPHERSON J D, and MCCOMBIE W R. Coming of age: Ten years of next-generation sequencing technologies[J]. Nature Reviews Genetics, 2016, 17(6): 333–351. doi: 10.1038/nrg.2016.49
    SHENDURE J, BALASUBRAMANIAN S, CHURCH G M, et al. DNA sequencing at 40: Past, present and future[J]. Nature, 2017, 550(7676): 345–353. doi: 10.1038/nature24286
    DEAMER D, AKESON M, and BRANTON D. Three decades of nanopore sequencing[J]. Nature Biotechnology, 2016, 34(5): 518–524. doi: 10.1038/nbt.3423
    FONTANA JR R E and DECAD G M. Moore’s law realities for recording systems and memory storage components: HDD, tape, NAND, and optical[J]. AIP Advances, 2018, 8(5): 056506. doi: 10.1063/1.5007621
    BONNET J, COLOTTE M, COUDY D, et al. Chain and conformation stability of solid-state DNA: Implications for room temperature storage[J]. Nucleic Acids Research, 2010, 38(5): 1531–1546. doi: 10.1093/nar/gkp1060
    PRAKADAN S M, SHALEK A K, and WEITZ D A. Scaling by shrinking: Empowering single-cell 'omics' with microfluidic devices[J]. Nature Reviews Genetics, 2017, 18(6): 345–361. doi: 10.1038/nrg.2017.15
    NEWMAN S, STEPHENSON A P, WILLSEY M, et al. High density DNA data storage library via dehydration with digital microfluidic retrieval[J]. Nature Communications, 2019, 10(1): 1706. doi: 10.1038/s41467-019-09517-y
  • 加載中
圖(1) / 表(1)
計(jì)量
  • 文章訪問數(shù):  4393
  • HTML全文瀏覽量:  1643
  • PDF下載量:  247
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-11-01
  • 修回日期:  2020-05-18
  • 網(wǎng)絡(luò)出版日期:  2020-05-21
  • 刊出日期:  2020-06-22

目錄

    /

    返回文章
    返回