基于變步長約瑟夫遍歷和DNA動態(tài)編碼的圖像加密算法
doi: 10.11999/JEIT190849 cstr: 32379.14.JEIT190849
-
1.
鄭州輕工業(yè)大學建筑環(huán)境工程學院 鄭州 450002
-
2.
鄭州輕工業(yè)大學電氣信息工程學院 鄭州 450002
Image Encryption Algorithm of Based on Variable Step Length Josephus Traversing and DNA Dynamic Coding
-
1.
College of Architecture Environment Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
-
2.
College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
-
摘要: 數(shù)字圖像傳輸和存儲的安全問題已成為信息安全研究的熱點。該文提出一種基于變步長約瑟夫遍歷和DNA動態(tài)編碼的圖像加密方法。首先將混沌映射產(chǎn)生的隨機序列作為約瑟夫遍歷的變步長,改進約瑟夫遍歷問題,并采用改進的約瑟夫遍歷對圖像像素位置進行置亂;其次,動態(tài)選擇DNA編碼規(guī)則,對圖像像素進行DNA編碼,并與給定的DNA序列進行堿基運算;DNA編碼規(guī)則的動態(tài)選擇,很好地解決了DNA編碼規(guī)則少所帶來的安全隱患,提高了算法的安全性。最后通過密文反饋和混沌系統(tǒng)迭代來進一步增強算法的混淆和擴散特性。實驗和安全性分析結(jié)果表明,該算法不僅對密鑰的敏感性強,而且能有效抵御統(tǒng)計性分析和窮舉分析等攻擊操作。
-
關(guān)鍵詞:
- 圖像加密 /
- DNA動態(tài)編碼 /
- 約瑟夫遍歷 /
- 置換
Abstract: The security of digital image transmission and storage has become a hotspot of information security research. An image encryption algorithm based on variable step length Josephus traversing and DNA dynamic coding is proposed. Firstly, through the thorough analysis of Joseph traversing, the random sequence generated by chaotic map is taken as the variable step length of Joseph traversing, and the pixel position is permutated. Secondly, according to the random sequence generated by chaotic map, the DNA coding rules of pixel points transformation are selected, and the image is dynamically encoded into DNA strand, and the DNA sequence is calculated based on the principle of complementary base pairing. Because the DNA coding rules of the pixels transformation are dynamic, the hidden danger caused by the lack of DNA coding rules is well solved, and the security of the algorithm is improved. Finally, the permutation and diffusion characteristics of the algorithm are further enhanced by ciphertext feedback and chaotic system iteration. Experiment and security analysis results show that the algorithm not only has large key space and strong sensitivity to keys, but also can effectively resist attacks such as statistical analysis and brutal analysis.-
Key words:
- Image encryption /
- Dynamic DNA encoding /
- Josephus traversing /
- Displace
-
表 5 加密密鑰敏感性(%)
初始值 NPCR UACI $ {x}'_{0} $+10–10 99.5956 33.5652 $ {y}'_{0} $+10–10 99.6109 33.3368 $ {z}'_{0} $+10–10 99.6261 33.5378 下載: 導出CSV
表 6 密鑰的解密敏感性分析(%)
初始值 NPCR UACI $ {x}'_{0} $+10–10 99.6048 34.6094 $ {y}'_{0} $+10–10 99.5956 34.4388 $ {x}'_{0} $+10–10 99.5529 34.5867 下載: 導出CSV
表 7 原始圖像發(fā)生微小改變時NPCR和UACI的值(%)
圖像 NPCR UACI Lena 99.5378 33.3080 Cameraman 99.6209 33.5080 Brain 99.5375 33.6244 White 99.6284 33.8780 下載: 導出CSV
表 8 直方圖的χ2分布統(tǒng)計
原始圖像χ2分布 密文圖像χ2分布 檢測結(jié)果 Lena 39851.3281 239.0847 通過 Cameraman 161271.875 212.0456 通過 Brain 1044635.67 258.3025 通過 下載: 導出CSV
表 9 原始圖像和密文圖像各方向的相關(guān)系數(shù)
圖像 相關(guān)系數(shù) 原始圖像 密文圖像 水平
方向垂直
方向對角線
方向水平
方向垂直
方向對角線
方向Cameraman 0.9540 0.9087 0.8813 –0.0070 0.0083 0.0013 Brain 0.9965 0.9959 0.9942 –0.0038 0.0051 0.0042 下載: 導出CSV
表 10 原始圖像和密文圖像的信息熵
圖像 信息熵 原始圖像 密文圖像 Lena 6.8794 7.9873 Cameraman 6.9046 7.9976 Brain 5.0329 7.9970 White 0 7.9970 下載: 導出CSV
表 11 Cameraman圖像遭受數(shù)據(jù)丟失攻擊后解密圖像的各項指標
裁剪面積 相關(guān)性 NPCR UACI 水平 垂直 對角線 原圖 0.9501 0.9231 0.9011 0 0 1/64 0.9145 0.8689 0.8649 1.7548 0.6277 1/16 0.8075 0.7754 0.7442 6.6223 2.3429 1/4 0.4667 0.4507 0.4352 25.7019 9.0683 下載: 導出CSV
-
BEHNIA S, AKHSHANI A, MAHMODI H, et al. A novel algorithm for image encryption based on mixture of chaotic maps[J]. Chaos, Solitons & Fractals, 2008, 35(2): 408–419. doi: 10.1016/j.chaos.2006.05.011 SHANNON C E. Communication theory of secrecy systems[J]. The Bell System Technical Journal, 1949, 28(4): 656–715. doi: 10.1002/j.1538-7305.1949.tb00928.x ?ZKAYNAK F. Brief review on application of nonlinear dynamics in image encryption[J]. Nonlinear Dynamics, 2018, 92(2): 305–313. doi: 10.1007/s11071-018-4056-x CHEN G R, MAO Y B, and CHUI C K. A symmetric image encryption scheme based on 3D chaotic cat maps[J]. Chaos, Solitons & Fractals, 2004, 21(3): 749–761. doi: 10.1016/j.chaos.2003.12.022 WANG Xinyuan, WANG Xiaojuan, ZHAO Jianfeng, et al. Chaotic encryption algorithm based on alternant of stream cipher and block cipher[J]. Nonlinear Dynamics, 2011, 63(4): 587–597. doi: 10.1007/s11071-010-9821-4 LEIER A, RICHTER C, BANZHAF W, et al. Cryptography with DNA binary strands[J]. Biosystems, 2000, 57(1): 13–22. doi: 10.1016/S0303-2647(00)00083-6 SHIMANOVSKY B, FENG J, and POTKONJAK M. Hiding Data in DNA[M]. PETITCOLAS F A P. Information Hiding. Berlin: Springer, 2008: 373–386. doi: 10.1007/3-540-36415-3_24. BONEH D, DUNWORTH C, and LIPTON R J. Breaking DES Using a Molecular Computer[M]. LIPTON R J and BAUM E B. DNA Based Computers I. Providence: American Mathematical Society, 1996: 37–65. GEHANI A, LABEAN T, and REIF J. DNA-based Cryptography[M]. JONOSKA N, P?UN G, and ROZENBERG G. Aspects of Molecular Computing. Berlin: Springer, 2003: 233–249. doi: 10.1007/978-3-540-24635-0_12. CLELLAND C T, RISCA V, BANCROFT C. Hiding messages in DNA microdots[J]. Nature, 1999, 399(6736): 533–534. doi: 10.1038/21092 LE GOFF G C, BLUM L J, and MARQUETTE C A. Shrinking Hydrogel-DNA spots generates 3D microdots arrays[J]. Macromolecular Bioscience, 2013, 13(2): 227–233. doi: 10.1002/mabi.201200370 WANG Yanfeng, HAN Qinqin, CUI Guangzhao, et al. Hiding messages based on DNA sequence and recombinant DNA technique[J]. IEEE Transactions on Nanotechnology, 2019, 18: 299–307. doi: 10.1109/TNANO.2019.2904842 ZHANG Yinan, WANG Fei, CHAO Jie, et al. DNA origami cryptography for secure communication[J]. Nature Communications, 2019, 10: 5469. doi: 10.1038/s41467-019-13517-3 NAMASUDRA S, DEVI D, KADRY S, et al. Towards DNA based data security in the cloud computing environment[J]. Computer Communications, 2020, 151: 539–547. doi: 10.1016/j.comcom.2019.12.041 ZHANG Xuncai, ZHOU Zheng, and NIU Ying. An image encryption method based on the feistel network and dynamic DNA encoding[J]. IEEE Photonics Journal, 2018: 3901014. doi: 10.1109/JPHOT.2018.2859257 WANG Xingyuan, ZHANG Yingqian, and ZHAO Yuanyuan. A novel image encryption scheme based on 2-D logistic map and DNA sequence operations[J]. Nonlinear Dynamics, 2015, 82(3): 1269–1280. doi: 10.1007/s11071-015-2234-7 CHAI Xiuli, CHEN Yiran, and BROYDE Lucie. A novel chaos-based image encryption algorithm using DNA sequence operations[J]. Optics and Lasers in Engineering, 2017, 88: 197–213. doi: 10.1016/j.optlaseng.2016.08.009 WANG Xingyuan, ZHU Xiaoqiang, and ZHANG Yingqian. An image encryption algorithm based on Josephus traversing and mixed chaotic map[J]. IEEE Access, 2018, 6: 23733–23746. doi: 10.1109/ACCESS.2018.2805847 郭毅, 邵利平, 楊璐. 基于約瑟夫和Henon映射的比特位圖像加密算法[J]. 計算機應用研究, 2015, 32(4): 1131–1137. doi: 10.3969/j.issn.1001-3695.2015.04.041GUO Yi, SHAO Liping, and YANG Lu. Bit-level image encryption algorithm based on Josephus and Henon chaotic map[J]. Application Research of Computers, 2015, 32(4): 1131–1137. doi: 10.3969/j.issn.1001-3695.2015.04.041 梁靜, 李紅菊, 趙鳳, 等. 一種構(gòu)造GC常重量DNA碼的方法[J]. 電子與信息學報, 2019, 41(10): 2423–2427. doi: 10.11999/JEIT190070LIANG Jing, LI Hongju, ZHAO Feng, et al. A method for constructing GC constant weight DNA codes[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2423–2427. doi: 10.11999/JEIT190070 CHAI Zongqian, LIANG Shili, HU Guorong, et al. Periodic characteristics of the Josephus ring and its application in image scrambling[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018(1): 162. doi: 10.1186/s13638-018-1167-5 -