基于DNA鏈置換的三級聯(lián)組合分子邏輯電路設計
doi: 10.11999/JEIT190847 cstr: 32379.14.JEIT190847
-
鄭州輕工業(yè)大學電氣信息工程學院 鄭州 450000
基金項目: 國家重點研發(fā)項目(2017YFE0103900),國家自然科學基金 (U1804262, 61603348, 61632002),中原千人計劃(204200510003),食管癌防治國家重點實驗室開放基金(K2020-0010, K2020-0011)
Design of Three-cascade Combinatorial Molecular Logic Circuit Based on DNA Strand Displacement
-
College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
Funds: The National Key R and D Program of China for International S and T Cooperation Projects (2017YFE0103900), The National Natural Science Foundation of China (U1804262, 61603348, 61632002), The Zhongyuan Thousand Talents Program (204200510003), The Open Fund of State Key Laboratory of Esophageal Cancer Prevention and Treatment (K2020-0010, K2020-0011)
-
摘要: DNA計算研究內容繁多復雜,DNA復雜邏輯電路的搭建屬于DNA計算的一個重要研究分支,其中邏輯門的構建屬于DNA復雜邏輯電路搭建的基礎研究,設計出更為簡單的邏輯門可以為研究者搭建復雜電路提供參考,節(jié)省基礎研究的寶貴時間。針對上述問題,該文利用使能控制端思想,采用DNA鏈置換技術,設計了與或、與非或非和異或同或3種DNA組合邏輯門。結果顯示,設計的3種組合邏輯門可實現(xiàn)6種邏輯運算功能,并利用所構建的組合邏輯門成功構造了多級聯(lián)組合分子邏輯電路,為DNA計算提供了更多的解決方案,促進了DNA計算機的發(fā)展。Abstract: The research content of DNA computing is various and complex. The construction of DNA complex logic circuit belongs to an important research branch of DNA computing, in which the construction of logic gate belongs to the basic research of DNA complex logic circuit construction. The design of a simpler logic gate is used to provide a reference for researchers to build complex circuits and save valuable time for basic research. In order to solve the above problems, the idea of enable control end and DNA strand displacement technique are used to design three kinds of DNA combinatorial logic gates: AND-OR gate, NAND-NOR gate and XOR-XNOR gate. The results show that the three kinds of combinatorial logic gates can realize six kinds of logic operation functions, and the multi-stage combinatorial molecular logic circuits are successfully constructed by using the combinatorial logic gates, which provides more solutions for DNA calculation. It promotes the development of DNA computer.
-
Key words:
- DNA computing /
- DNA strand displacement /
- DNA combinatorial logic gates
-
表 1 4輸入3級聯(lián)組合邏輯電路真值表
序號 C1/C2 C3/C4 C5/C6 Y 序號 C1/C2 C3/C4 C5/C6 Y 1 ON/OFF ON/OFF ON/OFF (ABC)'⊕D 6 OFF/ON OFF/ON ON/OFF ((A+B)+C)'⊕D 2 ON/OFF ON/OFF OFF/ON (ABC)'⊙D 7 OFF/ON ON/OFF OFF/ON ((A+B)C)'⊙D 3 ON/OFF OFF/ON ON/OFF ((AB)+C)'⊕D 8 OFF/ON ON/OFF ON/OFF ((A+B)C)'⊕D 4 ON/OFF OFF/ON OFF/ON ((AB)+C)'⊙D 9 OFF/OFF OFF/OFF OFF/OFF OFF 5 OFF/ON OFF/ON OFF/ON ((A+B)+C)'⊙D 10 ON/ON ON/ON ON/ON ON 下載: 導出CSV
-
殷志祥, 唐震, 張強, 等. 基于DNA折紙基底的與非門計算模型[J]. 電子與信息學報, 2020, 42(6): 1355–1364. doi: 10.11999/JEIT190825YIN Zhixiang, TANG Zhen, ZHANG Qiang, et al. NAND gate computational model based on the DNA origami template[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1355–1364. doi: 10.11999/JEIT190825 梁靜, 李紅菊, 趙鳳, 等. 一種構造GC常重量DNA碼的方法[J]. 電子與信息學報, 2019, 41(10): 2423–2427. doi: 10.11999/JEIT190070LIANG Jing, LI Hongju, ZHAO Feng, et al. A method for constructing GC constant weight DNA codes[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2423–2427. doi: 10.11999/JEIT190070 ADLEMAN L M. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 266(5187): 1021–1024. doi: 10.1126/science.7973651 LAKIN M R, YOUSSEF S, POLO F, et al. Visual DSD: A design and analysis tool for DNA strand displacement systems[J]. Bioinformatics, 2011, 27(22): 3211–3213. doi: 10.1093/bioinformatics/btr543 ZHU Jinbo, ZHANG Libing, DONG Shaojun, et al. Four-way junction-driven DNA strand displacement and its application in building majority logic circuit[J]. ACS Nano, 2013, 7(11): 10211–10217. doi: 10.1021/nn4044854 KONG Jinglin, ZHU Jinbo, CHEN Kaikai, et al. Specific biosensing using DNA aptamers and nanopores[J]. Advanced Functional Materials, 2019, 29(3): 180755. doi: 10.1002/adfm.201807555 CUI Yunxi, FENG Xuenan, WANG Yaxin, et al. An integrated-molecular-beacon based multiple exponential strand displacement amplification strategy for ultrasensitive detection of DNA methyltransferase activity[J]. Chemical Science, 2019, 10(8): 2290–2297. doi: 10.1039/C8SC05102J LI Hua, LIU Jin, and GU Hongzhou. Targeting nucleolin to obstruct vasculature feeding with an intelligent DNA nanorobot[J]. Journal of Cellular and Molecular Medicine, 2019, 23(3): 2248–2250. doi: 10.1111/jcmm.14127 TIKHOMIROV G, PETERSEN P, and QIAN Lulu. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns[J]. Nature, 2017, 552(7683): 67–71. doi: 10.1038/nature24655 KIELAR C, REDDAVIDE F V, TUBBENHAUER S, et al. Pharmacophore nanoarrays on DNA origami substrates as a single-molecule assay for fragment-based drug discovery[J]. Angewandte Chemie, 2018, 130(45): 15089–15093. doi: 10.1002/ange.201806778 TASCIOTTI E. Smart cancer therapy with DNA origami[J]. Nature Biotechnology, 2018, 36(3): 234–235. doi: 10.1038/nbt.4095 CORDEIRO M, OTRELO-CARDOSO A R, SVERGUN D I, et al. Optical and structural characterization of a chronic myeloid leukemia DNA biosensor[J]. ACS Chemical Biology, 2018, 13(5): 1235–1242. doi: 10.1021/acschembio.8b00029 QIAN Lulu and WINFREE E. A simple DNA gate motif for synthesizing large-scale circuits[J]. Journal of the Royal Society Interface, 2011, 8(62): 1281–1297. doi: 10.1098/rsif.2010.0729 WUNSCH B H, KIM S C, GIFFORD S M, et al. Gel-on-a-chip: Continuous, velocity-dependent DNA separation using nanoscale lateral displacement[J]. Lab on a Chip, 2019, 19(9): 1567–1578. doi: 10.1039/C8LC01408F 王春華, 藺海榮, 孫晶如, 等. 基于憶阻器的混沌、存儲器及神經(jīng)網(wǎng)絡電路研究進展[J]. 電子與信息學報, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research Progress on Chaos, Memory and Neural Network Circuits Based on Memristor[J]. Journal of Electronics and Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821 HE Jinglin, ZHANG Yang, YANG Chan, et al. Hybridization chain reaction based DNAzyme fluorescent sensor for L-histidine assay[J]. Analytical Methods, 2019, 11(16): 2204–2210. doi: 10.1039/C9AY00526A LIU Na, XU Kai, LIU Liquan, et al. A star-shaped DNA probe based on strand displacement for universal and multiplexed fluorometric detection of genetic variations[J]. Microchimica Acta, 2018, 185(9): 413. doi: 10.1007/s00604-018-2941-0 ZOU Chengye, WEI Xiaopeng, ZHANG Qiang, et al. Four-analog computation based on DNA strand displacement[J]. ACS Omega, 2017, 2(8): 4143–4160. doi: 10.1021/acsomega.7b00572 SUN Junwei, LI Xing, CUI Guangzhao, et al. One-bit half adder-half subtractor logical operation based on the DNA strand displacement[J]. Journal of Nanoelectronics and Optoelectronics, 2017, 12(4): 375–380. doi: 10.1166/jno.2017.2027 LI Wei, YANG Yang, YAN Hao, et al. Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement[J]. Nano Letters, 2013, 13(6): 2980–2988. doi: 10.1021/nl4016107 張成, 馬麗娜, 董亞非, 等. 自組裝DNA鏈置換分子邏輯計算模型[J]. 科學通報, 2012, 57(31): 2909–2915. doi: 10.1360/csb2012-57-31-2909ZHANG Cheng, MA Lina, DONG Yafei, et al. Molecular logic computing model based on DNA self-assembly strand branch migration[J]. Chinese Science Bulletin, 2012, 57(31): 2909–2915. doi: 10.1360/csb2012-57-31-2909 -