基于DNA和限制性核酸內(nèi)切酶的基本邏輯門設計
doi: 10.11999/JEIT190846 cstr: 32379.14.JEIT190846
-
1.
廈門大學航空航天學院 廈門 361102
-
2.
廈門大學信息學院 廈門 361005
-
3.
廈門大學深圳研究院 深圳 518057
Basic Logic Gates Design Based on DNA and Restriction Endonuclease
-
1.
School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
-
2.
School of Informatics, Xiamen University, Xiamen 361005, China
-
3.
Shenzhen Research Institute, Xiamen University, Shenzhen 518057, China
-
摘要: 由于DNA分子具有特異性、高并行性、微小性等天然特性,在信息處理過程中展現(xiàn)出了強大的并行計算能力和數(shù)據(jù)存儲能力。該文研究將具有特異性識別功能的限制性核酸內(nèi)切酶引入DNA鏈置換反應中,作為DNA電路的輸入,通過控制立足點的生成和移除設計了是門、非門和與門3種基本邏輯門。采用Visual DSD對邏輯模型進行模擬仿真,并通過凝膠電泳實驗驗證設計。與以往的分子邏輯門比較,該設計反應迅速,操作簡便,具有良好的擴展性,為大規(guī)模電路的設計提供了可能性。
-
關鍵詞:
- 分子邏輯計算 /
- DNA鏈置換 /
- 限制性核酸內(nèi)切酶 /
- 基本邏輯門
Abstract: Due to the natural characteristics of specificity, high parallelism and miniaturization of DNA molecules, it exhibits strong parallel computing power and data storage capability in information processing. In this study, restriction endonuclease with specific recognition function are introduced into DNA strand displacement as the input of the DNA circuit. The YES gate, NOT gate and AND gate are designed by controlling the generation and removal of the toehold. The logic model is simulated by Visual DSD, and the design is verified by PolyacrylAmide Gel Electrophoresis(PAGE) experiments. Compared with previous molecular logic gates, this design has a quick response, simple operation, and good scalability, which provides the possibility for the design of large-scale circuits. -
表 1 實驗所需寡核苷酸序列
DNA鏈 序列(5’ to 3’) 所涉及邏輯門 起作用的限制酶 A TTTTTTTTTTTGATCCGTTCCTTGCAGTTGCTGAGGTGGCCAT 非門 / B TTATGGCCACCTCAGCAACTGCAAGGAACGGATCA 非門 Nt.BbvCI C TGATCCGTTCCTTGCAGTTGCTGAGGT 非門 / P GGCTGCGAGACTCGGTTTTCCGAGTCTCGCAGCCTCAGCAGTTGGATACATCTCAAGC(其中TTTT為環(huán)形結構) 與門 Nt.BsmAI X TTTTTTTCAGCCTCAGCAGTTGGATACATCTCAAGCTTTTTTTTTTTTTTT 是門、與門 Nt.BbvCI Y GCTTGAGATGTATCCAACTGCTGAGGCTG 是門、與門 / Z CAGCCTCAGCAGTTGGATACATCTCAAGC 是門 / 下載: 導出CSV
-
WALDROP M M. The chips are down for Moore’s law[J]. Nature, 2016, 530(7589): 144–147. doi: 10.1038/530144a 梁靜, 李紅菊, 趙鳳, 等. 一種構造GC常重量DNA碼的方法[J]. 電子與信息學報, 2019, 41(10): 2423–2427. doi: 10.11999/JEIT190070LIANG Jing, LI Hongju, ZHAO Feng, et al. A method for constructing GC constant weight DNA codes[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2423–2427. doi: 10.11999/JEIT190070 李歆昊, 張旻. 基于人工免疫的鏈路層協(xié)議幀同步字識別[J]. 電子與信息學報, 2017, 39(3): 561–567. doi: 10.11999/JEIT160476LI Xinhao and ZHANG Min. Frame synchronization word identification of link layer protocol based on artificial immune[J]. Journal of Electronics &Information Technology, 2017, 39(3): 561–567. doi: 10.11999/JEIT160476 BONNET J, YIN P, ORTIZ M E, et al. Amplifying genetic logic gates[J]. Science, 2013, 340(6132): 599–603. doi: 10.1126/science.1232758 CHATTERJEE G, DALCHAU N, MUSCAT R A, et al. A spatially localized architecture for fast and modular DNA computing[J]. Nature Nanotechnology, 2017, 12(9): 920–927. doi: 10.1038/nnano.2017.127 WEINBERG B H, PHAM N T H, CARABALLO L D, et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells[J]. Nature Biotechnology, 2017, 35(5): 453–462. doi: 10.1038/nbt.3805 GARG S, SHAH S, BUI H, et al. Renewable time-responsive DNA circuits[J]. Small, 2018, 14(33): 1801470. doi: 10.1002/smll.201801470 張成, 楊靜, 王淑棟. DNA計算中熒光技術的應用及其發(fā)展[J]. 計算機學報, 2009, 32(12): 2300–2310. doi: 10.3724/SP.J.1016.2009.02300ZHANG Cheng, YANG Jing, and WANG Shudong. Development and application of fluorescence technology in DNA computing[J]. Chinese Journal of Computers, 2009, 32(12): 2300–2310. doi: 10.3724/SP.J.1016.2009.02300 張川, 鐘志偉, 莊雨辰, 等. 面向組合邏輯的DNA計算[J]. 中國科學: 信息科學, 2019, 49(7): 819–837. doi: 10.1360/N112019-00007ZHANG Chuan, ZHONG Zhiwei, ZHUANG Yuchen, et al. DNA computing for combinational logic[J]. Scientia Sinica Informationis, 2019, 49(7): 819–837. doi: 10.1360/N112019-00007 YURKE B, TURBERFIELD A J, MILLS JR A P, et al. A DNA-fuelled molecular machine made of DNA[J]. Nature, 2000, 406(6796): 605–608. doi: 10.1038/35020524 LI Wei, ZHANG Fei, YAN Hao, et al. DNA based arithmetic function: A half adder based on DNA strand displacement[J]. Nanoscale, 2016, 8(6): 3775–3784. doi: 10.1039/C5NR08497K ZHANG Tianchi, SHANG Chunli, DUAN Ruixue, et al. Polar organic solvents accelerate the rate of DNA strand replacement reaction[J]. The Analyst, 2015, 140(6): 2023–2028. doi: 10.1039/C4AN02302A YANG Xiaolong, TANG Yanan, TRAYNOR S M, et al. Regulation of DNA strand displacement using an allosteric DNA toehold[J]. Journal of the American Chemical Society, 2016, 138(42): 14076–14082. doi: 10.1021/jacs.6b08794 張文逸, 殷志祥. 基于DNA鏈置換的分子邏輯門計算模型[J]. 安徽理工大學學報: 自然科學版, 2015, 35(1): 7–10, 34. doi: 10.3969/j.issn.1672-1098.2015.01.002ZHANG Wenyi and YIN Zhixiang. Calculation model of molecular logic gates based on DNA strand displacement[J]. Journal of Anhui University of Science and Technology:Natural Science, 2015, 35(1): 7–10, 34. doi: 10.3969/j.issn.1672-1098.2015.01.002 PAN Linqiang, WANG Zhiyu, LI Yifan, et al. Nicking enzyme-controlled toehold regulation for DNA logic circuits[J]. Nanoscale, 2017, 9(46): 18223–18228. doi: 10.1039/C7NR06484E 蘇晨, 吉邢虎, 何治柯. 核酸工具酶輔助的信號放大技術在生物分子檢測中的應用[J]. 分析科學學報, 2016, 32(2): 273–281. doi: 10.13526/j.issn.1006-6144.2016.02.026SU Chen, JI Xinghu, and HE Zhike. Enzyme assisted signal amplification and its applications in biomolecule detection[J]. Journal of Analytical Science, 2016, 32(2): 273–281. doi: 10.13526/j.issn.1006-6144.2016.02.026 LAKIN M R, YOUSSEF S, POLO F, et al. Visual DSD: A design and analysis tool for DNA strand displacement systems[J]. Bioinformatics, 2011, 27(22): 3211–3213. doi: 10.1093/bioinformatics/btr543 SPACCASASSI C, LAKIN M R, and PHILLIPS A. A logic programming language for computational nucleic acid devices[J]. ACS Synthetic Biology, 2019, 8(7): 1530–1547. doi: 10.1021/acssynbio.8b00229 李娜, 丁寶全, 顏顥. DNA納米技術與生物編程[J]. 中國科學院院刊, 2014, 29(1): 55–69.LI Na, DING Baoquan, and YAN Hao. DNA nanotechnology and bio-programming[J]. Bulletin of the Chinese Academy of Sciences, 2014, 29(1): 55–69. -