一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于個性化網(wǎng)絡(luò)標(biāo)志物的藥物推薦方法研究

劉文斌 吳倩 杜玉改 方剛 石曉龍 許鵬

劉文斌, 吳倩, 杜玉改, 方剛, 石曉龍, 許鵬. 基于個性化網(wǎng)絡(luò)標(biāo)志物的藥物推薦方法研究[J]. 電子與信息學(xué)報, 2020, 42(6): 1340-1347. doi: 10.11999/JEIT190837
引用本文: 劉文斌, 吳倩, 杜玉改, 方剛, 石曉龍, 許鵬. 基于個性化網(wǎng)絡(luò)標(biāo)志物的藥物推薦方法研究[J]. 電子與信息學(xué)報, 2020, 42(6): 1340-1347. doi: 10.11999/JEIT190837
Wenbin LIU, Qian WU, Yugai DU, Gang FANG, Xiaolong SHI, Peng XU. Drug Recommendation Based on Individual Specific Biomarkers[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1340-1347. doi: 10.11999/JEIT190837
Citation: Wenbin LIU, Qian WU, Yugai DU, Gang FANG, Xiaolong SHI, Peng XU. Drug Recommendation Based on Individual Specific Biomarkers[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1340-1347. doi: 10.11999/JEIT190837

基于個性化網(wǎng)絡(luò)標(biāo)志物的藥物推薦方法研究

doi: 10.11999/JEIT190837 cstr: 32379.14.JEIT190837
基金項目: 國家重點研發(fā)計劃(2019YFA0706402),國家自然科學(xué)基金(61572367, 61573017, 61972107, 61972109)
詳細(xì)信息
    作者簡介:

    劉文斌:男,1969年生,教授,研究方向為生物信息學(xué)

    吳倩:女,1994年生,碩士,研究方向為生物信息學(xué)

    杜玉改:女,1993年生,碩士,研究方向為生物信息學(xué)

    方剛:男,1969年生,教授,研究方向為生物信息學(xué)

    石曉龍:男,1975年生,教授,研究方向為生物信息學(xué)

    許鵬:男,1986年生,博士后,研究方向為生物信息學(xué)

    通訊作者:

    許鵬 gdxupeng@gzhu.edu.cn

  • 中圖分類號: TP301

Drug Recommendation Based on Individual Specific Biomarkers

Funds: The National Key R&D Program of China (2019YFA0706402), The National Natural Science Foundation of China (61572367, 61573017, 61972107, 61972109)
  • 摘要: 基于個性化標(biāo)志物的藥物推薦研究,有助于實現(xiàn)個性化用藥及推動精準(zhǔn)醫(yī)療的發(fā)展。該文利用基因表達(dá)譜數(shù)據(jù)及蛋白質(zhì)網(wǎng)絡(luò)信息,基于基因2維高斯分布方法篩選出個性化網(wǎng)絡(luò)標(biāo)志物。進而綜合考慮靶基因的重要性和藥物的副作用,提出了一種計算藥物對個性化標(biāo)志物影響權(quán)重的方法。將該方法應(yīng)用于肺腺癌、腎透明細(xì)胞癌和子宮內(nèi)膜癌數(shù)據(jù)集,通過啟發(fā)式搜索方法,得到每個疾病樣本重要藥物推薦列表。結(jié)果表明,推薦的藥物列表在同種癌癥不同樣本中既存在一致性,也表現(xiàn)出很大的差異性,如藥物種類及藥物排序差異,這說明個性化藥物在疾病治療中的重要性及必要性。通過從藥物數(shù)據(jù)庫中搜索藥物組合對疾病治療的影響作用表明,該文方法篩選得到的許多藥物組合對具體疾病治療具有積極影響,這進一步證明該文基于個性化網(wǎng)絡(luò)標(biāo)志物的藥物推薦方法的準(zhǔn)確性。該文的研究將有效促進精準(zhǔn)化醫(yī)療的發(fā)展。
  • 圖  1  癌癥個性化網(wǎng)絡(luò)標(biāo)志物獲取流程

    圖  2  3種癌癥中藥物靶基因數(shù)量與藥物副作用數(shù)量之間的散點圖

    圖  3  3種癌癥中考慮藥物副作用和不考慮藥物副作用時藥物的排名

    圖  4  3類癌癥得到的候選藥物集合在各個樣本中的具體分布

    圖  5  DrugBank數(shù)據(jù)庫中具有協(xié)同作用的藥物對在各個樣本中的分布情況

    表  1  3種癌癥數(shù)據(jù)集統(tǒng)計信息

    癌癥類型樣本數(shù)量(正常/癌癥)
    LUAD609(95/514)
    KIRC602(72/530)
    UCEC578(35/543)
    下載: 導(dǎo)出CSV

    表  2  啟發(fā)式搜索的迭代過程

     個性化藥物推薦算法
     輸入:物集合$D = \{ d_1,d_2, ··· ,{d_n}\} $;
        個性化標(biāo)志物集合$T = \{ t_1,t_2, ··· ,t_m\} $;
     輸出:個性化藥物推薦列表 (Personalized Drug, PD);
     (1) Initialization: Set $k = 1$;
     (2) DO
     (3) for $i = 1,2, ··· ,n$
     (4) Compute $S\left( {{d_i}} \right)$;
     (5) EndFor
     (6) If S(di) is the maximum among all drugs in $D$ then
     (7) ${\rm{PD}}\left( k \right) = {d_i}$;
     (8) $k = k + 1$;
     (9) EndIf
     (10) Update $D$: Delete di from $D$;
     (11) Update $T$: Delete all targets of ${d_i}$ from $T$;
     (12) WHILE Max(targets number of each drug in $D$)>=6
    下載: 導(dǎo)出CSV
  • SIEGEL R L, MILLER K D, and JEMAL A. Cancer statistics, 2016[J]. CA: A Cancer Journal for Clinicians, 2016, 66(1): 7–30. doi: 10.3322/caac.21332
    TORRE L A, BRAY F, SIEGEL R L, et al. Global cancer statistics, 2012[J]. CA: A Cancer Journal for Clinicians, 2015, 65(2): 87–108. doi: 10.3322/caac.21262
    WANG Hongwei, SUN Qiang, ZHAO Wenyuan, et al. Individual-level analysis of differential expression of genes and pathways for personalized medicine[J]. Bioinformatics, 2015, 31(1): 62–68. doi: 10.1093/bioinformatics/btu522
    LIU Xiaoping, WANG Yuetong, JI Hongbin, et al. Personalized characterization of diseases using sample-specific networks[J]. Nucleic Acids Research, 2016, 44(22): e164. doi: 10.1093/nar/gkw772
    ZHANG Wanwei, ZENG Tao, and CHEN Luonan. EdgeMarker: Identifying differentially correlated molecule pairs as edge-biomarkers[J]. Journal of Theoretical Biology, 2014, 362: 35–43. doi: 10.1016/j.jtbi.2014.05.041
    YU Xiangtian, ZHANG Jingsong, SUN Shaoyan, et al. Individual-specific edge-network analysis for disease prediction[J]. Nucleic Acids Research, 2017, 45(20): e170. doi: 10.1093/nar/gkx787
    PERLMAN L, GOTTLIEB A, ATIAS N, et al. Combining drug and gene similarity measures for drug-target elucidation[J]. Journal of Computational Biology, 2011, 18(2): 133–145. doi: 10.1089/cmb.2010.0213
    WANG Wenhui, YANG Sen, and LI Jing. Drug Target Predictions Based on Heterogeneous Graph Inference[M]. ALTMAN R B, DUNKER A K, HUNTER L, et al. Biocomputing 2013. Hawaii, USA: World Scientific, 2013: 53-64 doi: 10.1142/9789814447973_0006.
    ZONG Nansu, KIM H, NGO V, et al. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations[J]. Bioinformatics, 2017, 33(15): 2337–2344. doi: 10.1093/bioinformatics/btx160
    SU Junjie, YOON B J, and DOUGHERTY E R. Accurate and reliable cancer classification based on probabilistic inference of pathway activity[J]. PLoS One, 2009, 4(12): e8161. doi: 10.1371/journal.pone.0008161
    TOMCZAK K, CZERWI?SKA P, and WIZNEROWICZ M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge[J]. Contemporary Oncology (Poznan, Poland) , 2015, 19(1A): A68–A77. doi: 10.5114/wo.2014.47136
    SZKLARCZYK D, MORRIS J H, COOK H, et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Research, 2017, 45(D1): D362–D368. doi: 10.1093/nar/gkw937
    WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0: A major update to the DrugBank database for 2018[J]. Nucleic Acids Research, 2018, 46(D1): D1074–D1082. doi: 10.1093/nar/gkx1037
    GRIFFITH M, GRIFFITH O L, COFFMAN A C, et al. DGIdb: Mining the druggable genome[J]. Nature Methods, 2013, 10(12): 1209–1210. doi: 10.1038/nmeth.2689
    李玉博, 陳邈. 幾乎完備高斯整數(shù)序列構(gòu)造法[J]. 電子與信息學(xué)報, 2018, 40(7): 1752–1758. doi: 10.11999/JEIT170844

    LI Yubo and CHEN Miao. Construction of nearly perfect gaussian integer sequences[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1752–1758. doi: 10.11999/JEIT170844
    陳曦, 張坤. 一種基于樹增強樸素貝葉斯的分類器學(xué)習(xí)方法[J]. 電子與信息學(xué)報, 2019, 41(8): 2001–2008. doi: 10.11999/JEIT180886

    CHEN Xi and ZHANG Kun. A classifier learning method based on tree-augmented na?ve bayes[J]. Journal of Electronics &Information Technology, 2019, 41(8): 2001–2008. doi: 10.11999/JEIT180886
    FANUCCHI M P, FOSSELLA F V, BELT R, et al. Randomized phase ii study of bortezomib alone and bortezomib in combination with docetaxel in previously treated advanced non-small-cell lung cancer[J]. Journal of Clinical Oncology, 2006, 24(31): 5025–5033. doi: 10.1200/JCO.2006.06.1853
    DAVIES A M, RUEL C, LARA P N, et al. The proteasome inhibitor bortezomib in combination with gemcitabine and carboplatin in advanced non-small cell lung cancer: A california cancer consortium phase I study[J]. Journal of Thoracic Oncology, 2008, 3(1): 68–74. doi: 10.1097/JTO.0b013e31815e8b88
    DAVIES A M, CHANSKY K, LARA Jr P N, et al. Bortezomib plus gemcitabine/carboplatin as first-line treatment of advanced non-small cell lung cancer: A phase II southwest oncology group study (S0339)[J]. Journal of Thoracic Oncology, 2009, 4(1): 87–92. doi: 10.1097/JTO.0b013e3181915052
    KELLY K, CROWLEY J, BUNN PA, et al. Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non-small-cell lung cancer: A southwest oncology group trial[J]. Journal of Clinical Oncology, 2001, 19(13): 3210–3218. doi: 10.1200/JCO.2001.19.13.3210
    SANDLER A, GRAY R, PERRY M C, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer[J]. New England Journal of Medicine, 2006, 355(24): 2542–2550. doi: 10.1056/NEJMoa061884
    MCNAMARA M, SWEENEY C, ANTONARAKIS E S, et al. The evolving landscape of metastatic hormone-sensitive prostate cancer: A critical review of the evidence for adding docetaxel or abiraterone to androgen deprivation[J]. Prostate Cancer and Prostatic Diseases, 2018, 21(3): 306–318. doi: 10.1038/s41391-017-0014-9
    ROBINET G, BARLESI F, FOURNEL P, et al. Second-line therapy with gefitinib in combination with docetaxel for advanced non-small cell lung cancer: A phase II randomized study[J]. Targeted Oncology, 2007, 2(2): 63–71. doi: 10.1007/s11523-007-0042-9
    ANGELOPOULOU A, KOLOKITHAS-NTOUKAS A, FYTAS C, et al. Folic acid-functionalized, condensed magnetic nanoparticles for targeted delivery of doxorubicin to tumor cancer cells overexpressing the folate receptor[J]. ACS Omega, 2019, 4(26): 22214–22227. doi: 10.1021/acsomega.9b03594
    TEDESCO-SILVA H, PASCUAL J, VIKLICKY O, et al. Safety of everolimus with reduced calcineurin inhibitor exposure in de novo kidney transplants: An analysis from the randomized TRANSFORM study[J]. Transplantation, 2019, 103(9): 1953–1963. doi: 10.1097/TP.0000000000002626
  • 加載中
圖(5) / 表(2)
計量
  • 文章訪問數(shù):  2845
  • HTML全文瀏覽量:  1157
  • PDF下載量:  256
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-10-29
  • 修回日期:  2020-01-20
  • 網(wǎng)絡(luò)出版日期:  2020-02-27
  • 刊出日期:  2020-06-22

目錄

    /

    返回文章
    返回