基于多通道調(diào)頻連續(xù)波毫米波雷達(dá)的微動(dòng)手勢識(shí)別
doi: 10.11999/JEIT190797 cstr: 32379.14.JEIT190797
-
復(fù)旦大學(xué)電磁波信息科學(xué)教育部重點(diǎn)實(shí)驗(yàn)室 上海 200433
Micro-motion Gesture Recognition Based on Multi-channel Frequency Modulated Continuous Wave Millimeter Wave Radar
-
Key Laboratory for Information Science of Electromagnetic Waves(MoE), Fudan University, Shanghai 200433, China
-
摘要:
該文提出一種基于多通道調(diào)頻連續(xù)波(FMCW)毫米波雷達(dá)的微動(dòng)手勢識(shí)別方法,并給出一種微動(dòng)手勢特征提取的最優(yōu)雷達(dá)參數(shù)設(shè)計(jì)準(zhǔn)則。通過對手部反射的雷達(dá)回波進(jìn)行時(shí)頻分析處理,估計(jì)目標(biāo)的距離多普勒譜、距離譜、多普勒譜和水平方向角度譜。設(shè)計(jì)固定幀時(shí)間長度拼接的距離-多普勒-時(shí)間圖特征,與距離-時(shí)間特征、多普勒-時(shí)間特征、水平方向角度-時(shí)間圖特征和三者聯(lián)合特征等,分別對7類微動(dòng)手勢進(jìn)行表征。根據(jù)手勢運(yùn)動(dòng)過程振幅和速度差異,進(jìn)行手勢特征捕獲和對齊。利用僅有5層的輕量化卷積神經(jīng)網(wǎng)絡(luò)對微動(dòng)手勢特征進(jìn)行分類。實(shí)驗(yàn)結(jié)果表明,相較其他特征,設(shè)計(jì)的距離-多普勒-時(shí)間圖特征能夠更為準(zhǔn)確地表征微動(dòng)手勢,且對未經(jīng)訓(xùn)練的測試對象具有更好的泛化能力。
-
關(guān)鍵詞:
- 毫米波雷達(dá) /
- 微動(dòng)手勢識(shí)別 /
- 調(diào)頻連續(xù)波 /
- 卷積神經(jīng)網(wǎng)絡(luò)
Abstract:A micro-motion gesture recognition method based on multi-channel Frequency Modulated Continuous Wave (FMCW) millimeter wave radar is proposed, and an optimal radar parameter design criterion for feature extraction of micro-motion gestures is presented. The time-frequency analysis process is performed on the radar echo reflected by the hand, and the range Doppler spectrum, the range spectrum, the Doppler spectrum and the horizontal direction angle spectrum of the target are estimated. Then the range-Doppler-time-map feature is designed, range-time-map feature, Doppler-time-map feature, horizontal-angle-time-map feature, and three-joint feature with fixed frame time length are used to characterize the 7 classes micro-motion gestures, respectively. And these gesture features are captured and aligned according to the difference in amplitude and speed of the gesture motion process. Then a five-layer lightweight convolutional neural network is designed to classify the gesture features. The experimental results show that, the range-Doppler-time-map feature designed in this paper characterizes the micro-motion gesture more accurately and has a better generalization ability for untrained test objects compared with other features.
-
表 1 不同時(shí)間長度特征的分類準(zhǔn)確率對比(%)
數(shù)據(jù)集長度 6幀 8幀 10幀 15幀 平均分類準(zhǔn)確率 76.86 91.86 99.14 99.29 下載: 導(dǎo)出CSV
表 2 多種手勢表征方法的對比
特征類型 分類方法 5名訓(xùn)練對象平均
分類準(zhǔn)確率(%)SC-RDTM 單通道CNN 98.28 CA-RDTM 單通道CNN 99.14 CA-DTM 單通道CNN 97.14 CA-RTM 單通道CNN 88.00 HATM 單通道CNN 71.71 CA-RTM, CA-DTM
與HATM聯(lián)合3通道CNN 93.57 下載: 導(dǎo)出CSV
表 3 多種手勢表征方法的對比
特征類型 分類方法 測試對象A平均分類準(zhǔn)確率(%) 測試對象B平均分類準(zhǔn)確率(%) SC-RDTM 單通道CNN 86.00 84.29 CA-RDTM 單通道CNN 87.71 85.43 CA-DTM 單通道CNN 84.57 83.43 CA-RTM 單通道CNN 27.14 25.42 HATM 單通道CNN 34.28 30.57 CA-RTM, CA-DTM與HATM聯(lián)合 3通道CNN 65.14 55.71 下載: 導(dǎo)出CSV
表 4 7種微動(dòng)手勢分類的混淆矩陣
預(yù)測類別 食指雙擊 食指順時(shí)
針繞圈食指逆時(shí)
針繞圈食指拇
指分開食指拇
指并攏拇指在食指
上前搓動(dòng)拇指在食指
上后搓動(dòng)準(zhǔn)確度(%) 真實(shí)類別 食指雙擊 100 0 0 0 0 0 0 100 食指順時(shí)針繞圈 0 100 0 0 0 0 0 100 食指逆時(shí)針繞圈 0 0 100 0 0 0 0 100 食指拇指分開 0 0 0 100 0 0 0 100 食指拇指并攏 0 0 0 0 98 0 2 98 拇指在食指上前搓動(dòng) 0 0 0 0 0 100 0 100 拇指在食指上后搓動(dòng) 0 0 0 0 4 0 96 96 準(zhǔn)確度(%) 100 100 100 100 96.08 100 97.96 99.14 下載: 導(dǎo)出CSV
表 5 測試對象A 7類微動(dòng)手勢分類的混淆矩陣
預(yù)測類別 食指雙擊 食指順時(shí)
針繞圈食指逆時(shí)
針繞圈食指拇
指分開食指拇
指并攏拇指在食指
上前搓動(dòng)拇指在食指
上后搓動(dòng)準(zhǔn)確度(%) 真實(shí)類別 食指雙擊 46 3 1 0 0 0 0 92 食指順時(shí)針繞圈 0 35 15 0 0 0 0 70 食指逆時(shí)針繞圈 3 13 34 0 0 0 0 68 食指拇指分開 0 0 0 49 0 1 0 98 食指拇指并攏 0 0 0 0 46 0 4 92 拇指在食指上前搓動(dòng) 0 0 0 1 0 49 0 98 拇指在食指上后搓動(dòng) 0 0 0 0 2 0 48 96 準(zhǔn)確度(%) 93.88 68.63 68 98 95.83 98 92.31 87.71 下載: 導(dǎo)出CSV
表 6 測試對象B 7類微動(dòng)手勢分類的混淆矩陣
預(yù)測類別 食指雙擊 食指順
時(shí)針繞圈食指逆時(shí)
針繞圈食指拇
指分開食指拇
指并攏拇指在食指
上前搓動(dòng)拇指在食指
上后搓動(dòng)準(zhǔn)確度(%) 真實(shí)類別 食指雙擊 45 2 3 0 0 0 0 90 食指順時(shí)針繞圈 0 32 18 0 0 0 0 64 食指逆時(shí)針繞圈 1 16 33 0 0 0 0 66 食指拇指分開 0 0 0 46 0 4 0 92 食指拇指并攏 0 0 0 0 48 0 2 96 拇指在食指上前搓動(dòng) 0 0 0 2 0 48 0 96 拇指在食指上后搓動(dòng) 0 0 0 0 3 0 47 94 準(zhǔn)確度(%) 97.83 64 61.11 95.83 94.12 92.31 95.92 85.43 下載: 導(dǎo)出CSV
-
WAN Qian, LI Yiran, LI Changzhi, et al. Gesture recognition for smart home applications using portable radar sensors[C]. The 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, USA, 2014: 6414–6417. KHAN F, LEEM S K, and CHO S H. Hand-based gesture recognition for vehicular applications using IR-UWB radar[J]. Sensors, 2017, 17(4): 833. doi: 10.3390/s17040833 XIA Zia, SANG Xinzhu, CHEN Duo, et al. An interactive VR system based on full-body tracking and gesture recognition[C]. The SPIE 10021, Optical Design and Testing VⅡ, Beijing, China 2016: 1002129. LEE B G and LEE S M. Smart wearable hand device for sign language interpretation system with sensors fusion[J]. IEEE Sensors Journal, 2018, 18(3): 1224–1232. doi: 10.1109/JSEN.2017.2779466 TARANTA Ⅱ E M, SIMONS T K, SUKTHANKAR R, et al. Exploring the benefits of context in 3D gesture recognition for game-based virtual environments[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(1): Article No.1. BONATO V, FERNANDES M M, and MARQUES E. A smart camera with gesture recognition and SLAM capabilities for mobile robots[J]. International Journal of Electronics, 2006, 93(6): 385–401. doi: 10.1080/00207210600565465 孟春寧, 呂建平, 陳萱華. 基于普通紅外攝像機(jī)的手勢識(shí)別[J]. 計(jì)算機(jī)工程與應(yīng)用, 2015, 51(16): 17–22. doi: 10.3778/j.issn.1002-8331.1504-0303MENG Chunning, Lü Jianping, and CHEN Xuanhua. Gesture recognition based on universal infrared camera[J]. Computer Engineering and Applications, 2015, 51(16): 17–22. doi: 10.3778/j.issn.1002-8331.1504-0303 PLOUFFE G and CRETU A M. Static and dynamic hand gesture recognition in depth data using dynamic time warping[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 305–316. doi: 10.1109/TIM.2015.2498560 YANG Qifan, TANG Hao, ZHAO Xuebing, et al. Dolphin: Ultrasonic-based gesture recognition on smartphone platform[C]. The 2014 IEEE 17th International Conference on Computational Science and Engineering, Chengdu, China, 2014: 1461–1468. KELLOGG B, TALLA V, and GOLLAKOTA S. Bringing gesture recognition to all devices[C]. The 11th Usenix Conference on Networked Systems Design and Implementation, Seattle, USA, 2014: 303–316. ZOU Yongpan, XIAO Jiang, HAN Jinsong, et al. GRfid: A device-free RFID-based gesture recognition system[J]. IEEE Transactions on Mobile Computing, 2017, 16(2): 381–393. doi: 10.1109/TMC.2016.2549518 ABDELNASSER H, YOUSSEF M, and HARRAS K A. WiGest: A ubiquitous WiFi-based gesture recognition system[C]. Proceedings of IEEE Conference on Computer Communications, Hongkong, China, 2015: 1472–1480. ZHANG Jiajun, TAO Jinkun, and SHI Zhiguo. Doppler-radar based hand gesture recognition system using convolutional neural networks[C]. The 2017 International Conference on Communications, Signal Processing, and Systems, Singapore, 2019: 1096–1113. LIEN J, GILLIAN N, KARAGOZLER M, et al. Soli: Ubiquitous gesture sensing with millimeter wave radar[J]. ACM Transactions on Graphics, 2016, 35(4): Article No.142. WANG Saiwen, SONG Jie, LIEN J, et al. Interacting with Soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum[C]. The 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 2016: 851–860. HAZRA S and SANTRA A. Robust gesture recognition using Millimetric-wave radar system[J]. IEEE Sensors Letters, 2018, 2(4): 7001804. MALYSA G, WANG Dan, NETSCH L, et al. Hidden Markov model-based gesture recognition with FMCW radar[C]. 2016 IEEE Global Conference on Signal and Information Processing, Washington, USA, 2016: 1017–1021. 王勇, 吳金君, 田增山, 等. 基于FMCW雷達(dá)的多維參數(shù)手勢識(shí)別算法[J]. 電子與信息學(xué)報(bào), 2019, 41(4): 822–829. doi: 10.11999/JEIT180485WANG YONG, WU Jinjun, TIAN Zengshan, et al. Gesture recognition with multi-dimensional parameter using FMCW radar[J]. Journal of Electronics &Information Technology, 2019, 41(4): 822–829. doi: 10.11999/JEIT180485 劉熠辰, 徐豐. 基于雷達(dá)技術(shù)的手勢識(shí)別[J]. 中國電子科學(xué)研究院學(xué)報(bào), 2016, 11(6): 609–613. doi: 10.3969/j.issn.1673-5692.2016.06.009LIU Yichen and XU Feng. Gesture recognition based on radar technology[J]. Journal of CAEIT, 2016, 11(6): 609–613. doi: 10.3969/j.issn.1673-5692.2016.06.009 -