工業(yè)互聯(lián)網(wǎng)低功耗數(shù)據(jù)鏈算法設(shè)計綜述——聯(lián)合信源信道編碼設(shè)計的必要性、現(xiàn)實與前景
doi: 10.11999/JEIT190762 cstr: 32379.14.JEIT190762
-
1.
廈門大學(xué)信息學(xué)院 廈門 361005
-
2.
華僑大學(xué)信息科學(xué)與工程學(xué)院 廈門 361021
-
3.
寧波大學(xué)信息科學(xué)與工程學(xué)院 寧波 315000
Overview of Low Power Data Link Algorithms Design for Industrial Internet——Necessity, Reality and Prospect of JSCC Design
-
1.
College of Information, Xiamen University, Xiamen 361005, China
-
2.
College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
-
3.
College of Information Science and Engineering, Ningbo University, Ningbo 315000, China
-
摘要:
原模圖低密度奇偶校驗(P-LDPC)碼已經(jīng)廣泛應(yīng)用于各種通信系統(tǒng),為了使其能夠滿足不同應(yīng)用場景下系統(tǒng)對糾錯性能、硬件資源損耗以及功耗等方面的要求,需要對P-LDPC碼進行進一步的設(shè)計優(yōu)化。該文主要從標準信道環(huán)境下基于雙P-LDPC(DP-LDPC)碼的聯(lián)合信源信道編碼(JSCC)系統(tǒng)的屬性研究、系統(tǒng)設(shè)計優(yōu)化以及性能表現(xiàn)等角度入手,對近些年出現(xiàn)的針對該系統(tǒng)環(huán)境所做的優(yōu)化分析工作進行了綜述。表明進行的優(yōu)化工作屬實顯著地改善了系統(tǒng)性能,為面向工業(yè)互聯(lián)網(wǎng)(II)的LDPC碼的研究工作提供些許思路。最后,該文對未來的研究工作進行了展望,為感興趣的研究學(xué)者提供參考以繼續(xù)推進。
-
關(guān)鍵詞:
- 工業(yè)互聯(lián)網(wǎng) /
- 低功耗 /
- 聯(lián)合信源信道編碼 /
- 原模圖低密度奇偶校驗碼
Abstract:Protograph Low Density Parity Check (P-LDPC) code is widely used in various communication systems. In order to meet the requirements of error correction performance, hardware resource loss and power consumption in different application scenarios, further design optimization of P-LDPC codes is needed. This paper focuses on the properties of Joint Source-Channel Coding (JSCC) system based on Double P-LDPC (DP-LDPC) codes in standard channel environment, the optimization of code design and performance behavior, etc. The design and optimization for the system environment in recent years is summarized. It shows that the design optimization work has significantly improved the system performance, which provides some ideas for the research of Industrial Internet (II)-oriented LDPC code. Finally, the future research work is discussed for the reference and promotion of interested scholars.
-
圖 10 當(dāng)信源統(tǒng)計概率
$p(1) = 0.0{\rm{8}}$ 和$p(1) = 0.0{\rm{5}}$ 時,提出的搜索算法與傳統(tǒng)優(yōu)化方法的仿真結(jié)果對比表 1 不同信源統(tǒng)計特性以及不同信道編碼矩陣在基于DP-LDPC碼的JSCC系統(tǒng)下對應(yīng)的譯碼門限值
${p_{(1)}} = 0.010$ ${p_{(1)}} = 0.015$ ${p_{(1)} } = 0.020$ BAR4JA –2.524 –1.450 –0.632 BIARA–1 –3.145 –1.984 –1.155 BAR3A –3.248 –1.910 –0.965 BIARA–2 –3.438 –2.254 –1.379 下載: 導(dǎo)出CSV
表 2 針對
${{{B}}_{\rm{L1}}}$ 的搜索算法(1) 給出$p(1)$, ${{{B}}_{\rm{s}}}$, ${{{B}}_{\rm{c}}}$,且有${{{B}}_{\rm{L2}}}=0$; (2) 初始化化${{{B}}_{\rm{L1}}}=0$; (3) 合并${{{B}}_{\rm{s}}}$, ${{{B}}_{\rm{c}}}$, ${{{B}}_{\rm{L1}}}$和${{{B}}_{\rm{L2}}}$,即為初始的${{{B}}_{\rm{J}}}$; (4) ${{{B}}_{{\rm{J}}\_{\rm{min}}}} \leftarrow {{{B}}_{\rm{J}}}$, $\delta \left( {{{{B}}_{{\rm{J}}\_{\rm{min}}}},p(1)} \right) \leftarrow \delta \left( {{{{B}}_{\rm{J}}},p(1)} \right)$; (5) 如果$p(1) < p{(1)^{{\rm{st}}}}$ (6) 遍歷除去信道碼中的預(yù)編碼器的所有的鏈接; (7) 根據(jù)約束條件式(2)改變${{{B}}_{\rm{L1}}}$; (8) 如果$ \delta \left( {{{{B}}_{\rm{J}}},p(1)} \right) < \delta \left( {{{{B}}_{{\rm{J}}\_ {\rm{min}}}},p(1)} \right)$ (9) ${{{B}}_{{\rm{J}}\_ {\rm{min}}}} \leftarrow {{{B}}_{\rm{J}}}$, $\delta \left( {{{{B}}_{{\rm{J}}\_{\rm{min}}}},p(1)} \right) \leftarrow \delta \left( {{{{B}}_{\rm{J}}},p(1)} \right)$; (10) 輸出:${{{B}}_{{\rm{J}}\_ {\rm{min}}}}$, $\delta \left( {{{{B}}_{{\rm{J}}\_ {\rm{min}}}},p(1)} \right)$ 下載: 導(dǎo)出CSV
-
LIN Jie, YU Wei, ZHANG Nan, et al. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications[J]. IEEE Internet of Things Journal, 2017, 4(5): 1125–1142. doi: 10.1109/JIOT.2017.2683200 GUYADER A, FABRE E, GUILLEMOT C, et al. Joint source-channel turbo decoding of entropy-coded sources[J]. IEEE Journal on Selected Areas in Communications, 2001, 19(9): 1680–1696. doi: 10.1109/49.947033 周延蕾, 梁釗, 蒙山, 等. 信源信道聯(lián)合編碼的一種方法[J]. 電子與信息學(xué)報, 2001, 23(11): 1110–1115.ZHOU Yanlei, LIANG Zhao, MENG Shan, et al. A joint sourie/channel coding design[J]. Journal of Electronics &Information Technology, 2001, 23(11): 1110–1115. PU Lingling, WU Zhenyu, BILGIN A, et al. LDPC-based iterative joint source-channel decoding for JPEG2000[J]. IEEE Transactions on Image Processing, 2007, 16(2): 577–581. doi: 10.1109/TIP.2006.888329 RICHARDSON T, SHOKRROLLAHI A, and URBANKE R. Design of capacity-approaching irregular low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2001, 47(2): 619–637. doi: 10.1109/18.910578 DEL SER J, CRESPO P M, ESNAOLA I, et al. Joint source-channel coding of sources with memory using Turbo codes and the burrows-wheeler transform[J]. IEEE Transactions on Communications, 2010, 58(7): 1984–1992. doi: 10.1109/TCOMM.2010.07.090141 BI Chongyuan and LIANG Jie. Joint source-channel coding of JPEG 2000 image transmission over two-way multi-relay networks[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3594–3608. doi: 10.1109/TIP.2017.2700765 洪少華, 王琳. 基于原模圖LDPC碼的分布式聯(lián)合信源信道編碼[J]. 電子與信息學(xué)報, 2017, 39(11): 2594–2599. doi: 10.11999/JEIT170113HONG Shaohua and WANG Lin. Protograph LDPC based distributed joint source channel coding[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2594–2599. doi: 10.11999/JEIT170113 CALLAGER R G. Low-Density Parity-Check Codes[M]. Cambridge: MIT Press, 1963. TANNER R. A recursive approach to low complexity codes[J]. IEEE Transactions on Information Theory, 1981, 27(5): 533–547. doi: 10.1109/TIT.1981.1056404 MACKAY D J C and NEAL R M. Good codes based on very sparse matrices[C]. The 5th IMA International Conference on Cryptography and Coding, Cirencester, UK, 1995: 100–111. SPIELMAN D A. Linear-time encodable and decodable error-correcting codes[J]. IEEE Transactions on Information Theory, 1996, 42(6): 1723–1731. doi: 10.1109/18.556668 ALON N and LUBY M. A linear time erasure-resilient code with nearly optimal recovery[J]. IEEE Transactions on Information Theory, 1996, 42(6): 1732–1736. doi: 10.1109/18.556669 SIPSER M and SPIELMAN D A. Expander codes[J]. IEEE Transactions on Information Theory, 1996, 42(6): 1710–1722. doi: 10.1109/18.556667 MACKAY D J C and NEAL R M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1997, 33(6): 457–458. doi: 10.1049/el:19970362 LUBY M G, MITZENMACHER M, SHOKROLLAHI M A, et al. Practical loss-resilient codes[C]. The 29th ACM Symposium on Theory of Computing, El Paso, 1997: 150–159. DAVEY M C and MACKAY D. Low-density parity check codes over GF(q)[J]. IEEE Communications Letters, 1998, 2(6): 165–167. doi: 10.1109/4234.681360 MACKAY D J C. Good error-correcting codes based on very sparse matrices[J]. IEEE Transactions on Information Theory, 1999, 45(2): 399–431. doi: 10.1109/18.748992 MACKAY D J C, WILSON S T, and DAVEY M C. Comparison of constructions of irregular Gallager codes[J]. IEEE Transactions on Communications, 1999, 47(10): 1449–1454. doi: 10.1109/26.795809 RICHARDSON T J and URBANKE R L. The capacity of low-density parity-check codes under message-passing decoding[J]. IEEE Transactions on Information Theory, 2001, 47(2): 599–618. doi: 10.1109/18.910577 RICHARDSON T J and URBANKE R L. Efficient encoding of low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2001, 47(2): 638–656. doi: 10.1109/18.910579 RICHARDSON T and URBANKE R. The renaissance of Gallager’s low-density parity-check codes[J]. IEEE Communications Magazine, 2003, 41(8): 126–131. doi: 10.1109/MCOM.2003.1222728 ZYABLOV V V and PINSKER M S. Estimation of the error-correction complexity for Gallager low-density codes[J]. Problemy Peredachi Informatsii, 1975, 11(1): 23–26. MARGULIS G A. Explicit constructions of graphs without short cycles and low density codes[J]. Combinatorica, 1982, 2(1): 71–78. doi: 10.1007/BF02579283 TEN BRINK S. Convergence behavior of iteratively decoded parallel concatenated codes[J]. IEEE Transactions on Communications, 2001, 49(10): 1727–1737. doi: 10.1109/26.957394 TEN BRINK S, KRAMER G, and ASHIKHMIN A. Design of low-density parity-check codes for modulation and detection[J]. IEEE Transactions on Communications, 2004, 52(4): 670–678. doi: 10.1109/TCOMM.2004.826370 ASHIKHMIN A, KRAMER G, and TEN BRINK S. Extrinsic information transfer functions: Model and erasure channel properties[J]. IEEE Transactions on Information Theory, 2004, 50(11): 2657–2673. doi: 10.1109/TIT.2004.836693 FRANCESCHINI M, FERRARI G, and RAHELI R. Does the performance of LDPC codes depend on the channel?[J]. IEEE Transactions on Communications, 2006, 54(12): 2129–2132. doi: 10.1109/TCOMM.2006.885042 PENG F, RYAN W E, and WESEL R D. Surrogate-channel design of universal LDPC codes[J]. IEEE Communications Letters, 2006, 10(6): 480–482. doi: 10.1109/LCOMM.2006.1638622 XIAO Hua and BANIHASHEMI A H. Improved progressive-edge-growth (PEG) construction of irregular LDPC codes[J]. IEEE Communications Letters, 2004, 8(12): 715–717. doi: 10.1109/LCOMM.2004.839612 HU Xiaoyu, ELEFTHERIOU E, and ARNOLD D M. Regular and irregular progressive edge-growth tanner graphs[J]. IEEE Transactions on Information Theory, 2005, 51(1): 386–398. doi: 10.1109/TIT.2004.839541 RICHTER G and HOF A. On a construction method of irregular LDPC codes without small stopping sets[C]. 2006 IEEE International Conference on Communications, Istanbul, Turkey, 2006: 1119–1124. doi: 10.1109/ICC.2006.254897. 周琳, 吳鎮(zhèn)揚. 迭代結(jié)構(gòu)的信源信道聯(lián)合解碼及其簡化算法[J]. 電子與信息學(xué)報, 2009, 31(10): 2427–2431.ZHOU Lin and WU Zhenyang. Simplified iterative joint source-channel decoding algorithm[J]. Journal of Electronics &Information Technology, 2009, 31(10): 2427–2431. ZHENG Xia, LAU F C M, and TSE C K. Constructing short-length irregular LDPC codes with low error floor[J]. IEEE Transactions on Communications, 2010, 58(10): 2823–2834. doi: 10.1109/TCOMM.2010.083110.080638 BONELLO N, CHEN Sheng, and HANZO L. Low-density parity-check codes and their rateless relatives[J]. IEEE Communications Surveys & Tutorials, 2011, 13(1): 3–26. doi: 10.1109/SURV.2011.040410.00042 MOURA J M F, LU Jin, and ZHANG Haotian. Structured low-density parity-check codes[J]. IEEE Signal Processing Magazine, 2004, 21(1): 42–55. doi: 10.1109/MSP.2004.1267048 LIVA G, SONG Shumei, LAN Lan, et al. Design of LDPC codes: A survey and new results[J]. Journal of Communications Software and Systems, 2006, 2(3): 191–211. doi: 10.24138/jcomss.v2i3.283 EL-HAJJAR M and HANZO L. EXIT charts for system design and analysis[J]. IEEE Communications Surveys & Tutorials, 2014, 16(1): 127–153. doi: 10.1109/SURV.2013.050813.00137 YAZDANI M R, HEMATI S, and BANIHASHEMI A H. Improving belief propagation on graphs with cycles[J]. IEEE Communications Letters, 2004, 8(1): 57–59. doi: 10.1109/LCOMM.2003.822499 TAGHAVI M H and SIEGEL P H. Adaptive methods for linear programming decoding[J]. IEEE Transactions on Information Theory, 2008, 54(12): 5396–5410. doi: 10.1109/TIT.2008.2006384 BURSHTEIN D and MILLER G. Asymptotic enumeration methods for analyzing LDPC codes[J]. IEEE Transactions on Information Theory, 2004, 50(6): 1115–1131. doi: 10.1109/TIT.2004.828064 LITSYN S and SHEVELEV V. Distance distributions in ensembles of irregular low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2003, 49(12): 3140–3159. doi: 10.1109/TIT.2003.820012 VARNICA N, FOSSORIER M P C, and KAVCIC A. Augmented belief propagation decoding of low-density parity check codes[J]. IEEE Transactions on Communications, 2007, 55(7): 1308–1317. doi: 10.1109/TCOMM.2007.900611 KIM K J, CHUNG J H, and YANG K. Bounds on the size of parity-check matrices for quasi-cyclic low-density parity-check codes[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7288–7298. doi: 10.1109/TIT.2013.2279831 TASDIGHI A, BANIHASHEMI A H, and SADEGHI M R. Efficient search of girth-optimal QC-LDPC codes[J]. IEEE Transactions on Information Theory, 2016, 62(4): 1552–1564. doi: 10.1109/TIT.2016.2523979 STEINER F, B?CHERER G, and LIVA G. Protograph-based LDPC code design for shaped bit-metric decoding[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(2): 397–407. doi: 10.1109/JSAC.2015.2504298 MU Xijin, SHEN Conghui, and BAI Baoming. A combined algebraic- and graph-based method for constructing structured RC-LDPC codes[J]. IEEE Communications Letters, 2016, 20(7): 1273–1276. doi: 10.1109/LCOMM.2016.2558152 ANDREWS K S, DIVSALAR D, DOLINAR S, et al. The development of turbo and LDPC codes for deep-space applications[J]. Proceedings of the IEEE, 2007, 95(11): 2142–2156. doi: 10.1109/JPROC.2007.905132 CALZOLARI G P, CHIANI M, CHIARALUCE F, et al. Channel coding for future space missions: New requirements and trends[J]. Proceedings of the IEEE, 2007, 95(11): 2157–2170. doi: 10.1109/JPROC.2007.905134 UCHOA A G D, HEALY C T, and DE LAMARE R C. Iterative detection and decoding algorithms for MIMO systems in block-fading channels using LDPC codes[J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 2735–2741. doi: 10.1109/TVT.2015.2432099 DJORDJEVIC I B. On the irregular nonbinary QC-LDPC-coded hybrid multidimensional OSCD-modulation enabling beyond 100 Tb/s optical transport[J]. Journal of Lightwave Technology, 2013, 31(16): 2669–2675. doi: 10.1109/JLT.2013.2272328 RAFATI A, LOU Huang, and XIAO Chengshan. Soft-decision feedback turbo equalization for LDPC-coded MIMO underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 90–99. doi: 10.1109/JOE.2013.2241933 SONG H, TODD R M, and CRUZ J R. Low density parity check codes for magnetic recording channels[J]. IEEE Transactions on Magnetics, 2000, 36(5): 2183–2186. doi: 10.1109/20.908351 KURKOSKI B M, SIEGEL P H, and WOLF J K. Joint message-passing decoding of LDPC codes and partial-response channels[J]. IEEE Transactions on Information Theory, 2002, 48(6): 1410–1422. doi: 10.1109/TIT.2002.1003830 KSCHISCHANG F R. Codes defined on graphs[J]. IEEE Communications Magazine, 2003, 41(8): 118–125. doi: 10.1109/MCOM.2003.1222727 LIN Shu and COSTELLO D J. Error Control Coding: Fundamentals and Applications[M]. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2004. RYAN W E. An Introduction to LDPC Codes[M]. VASIC B. CRC Handbook for Coding and Signal Processing for Recording Systems. Boca Raton: CRC Press, 2004. RICHARDSON T and URBANKE R. Modern Coding Theory[M]. Cambridge, UK: Cambridge University Press, 2008. RICHARDSON T and URBANKE R. Multi-edge type LDPC codes (2004)[EB/OL]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.7310, 2002. THORPE J. Low-Density Parity-Check (LDPC) codes constructed from protographs[R]. IPN Progress Report, 2003: 42–154. DIVSALAR D, JONES C, DOLINAR S, et al. Protograph based LDPC codes with minimum distance linearly growing with block size[C]. 2005 IEEE Global Telecommunications Conference, St. Louis, France, 2005: 1152–1156. ABBASFAR A, DIVSALAR D, and YAO K. Accumulate-repeat-accumulate codes[J]. IEEE Transactions on Communications, 2007, 55(4): 692–702. doi: 10.1109/TCOMM.2007.894109 DIVSALAR D, DOLINAR S, JONES C R, et al. Capacity-approaching protograph codes[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(6): 876–888. doi: 10.1109/JSAC.2009.090806 VAN NGUYEN T, NOSRATINIA A, and DIVSALAR D. Bilayer protograph codes for half-duplex relay channels[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 1969–1977. doi: 10.1109/TWC.2013.040413.111745 FANG Yi, GUAN Yongliang, BI Guoan, et al. Rate-compatible root-protograph LDPC codes for quasi-static fading relay channels[J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 2741–2747. doi: 10.1109/TVT.2015.2420570 VAN NGUYEN T. Design of capacity-approaching protograph-based LDPC coding systems[D]. [Ph. D. dissertation], The University of Texas at Dallas, 2012. FANG Yi, BI Guoan, and GUAN Yongliang. Design and analysis of root-protograph LDPC codes for non-ergodic block-fading channels[J]. IEEE Transactions on Wireless Communications, 2015, 14(2): 738–749. doi: 10.1109/TWC.2014.2359221 KARIMI M and BANIHASHEMI A H. On the girth of quasi-cyclic protograph LDPC codes[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4542–4552. doi: 10.1109/TIT.2013.2251395 LIVA G and CHIANI M. Protograph LDPC codes design based on EXIT analysis[C]. 2007 IEEE Global Telecommunications Conference, Washington, USA, 2007: 3250–3254. FRESIA M, PERéZ-CRUZ F, POOR H V, et al. Joint source and channel coding[J]. IEEE Signal Processing Magazine, 2010, 27(6): 104–113. HE Jiguang, WANG Lin, and CHEN Pingping. A joint source and channel coding scheme base on simple protograph structured codes[C]. 2012 International Symposium on Communications and Information Technologies, Gold Coast, 2012: 65–69. WANG Lin, WU Huihui, and HONG Shaohua. The sensitivity of joint source-channel coding based on double protograph LDPC codes to source statistics[C]. The 9th International Symposium on Medical Information and Communication Technology, Kamakura, Japan, 2015: 213–217. WU Huihui, WANG Lin, and HONG Shaohua, et al. Performance of joint source-channel coding based on protograph LDPC codes over rayleigh fading channels[J]. IEEE Communications Letters, 2014, 18(4): 652–655. doi: 10.1109/LCOMM.2014.022714.140112 CHEN Chen, WANG Lin, and XIONG Zixiang. Matching criterion between source statistics and source coding rate[J]. IEEE Communications Letters, 2015, 19(9): 1504–1507. doi: 10.1109/LCOMM.2015.2454505 CHEN Qiwang, WANG Lin, HONG Shaohua, et al. Performance improvement of JSCC scheme through redesigning channel code[J]. IEEE Communications Letters, 2016, 20(6): 1088–1091. doi: 10.1109/LCOMM.2016.2554543 CHEN Chen, WANG Lin, and LIU Sanya. The design of protograph LDPC codes as source codes in a JSCC system[J]. IEEE Communications Letters, 2018, 22(4): 672–675. doi: 10.1109/LCOMM.2018.2804382 NETO H V B and HENKEL W. Multi-edge optimization of low-density parity-check codes for joint source-channel coding[C]. The 9th International ITG Conference on Systems, Communication and Coding, München, Deutschland, 2013: 1–6. HONG Shaohua, CHEN Qiwang, and WANG Lin. Performance analysis and optimisation for edge connection of JSCC system based on double protograph LDPC codes[J]. IET Communications, 2018, 12(2): 214–219. doi: 10.1049/iet-com.2017.0787 LIU Sanya, CHEN Chen, WANG Lin, et al. Edge connection optimization for JSCC system based on DP-LDPC codes[J]. IEEE Wireless Communications Letters, 2019, 8(4): 996–999. doi: 10.1109/LWC.2019.2903442 CHEN Chen, WANG Lin, and LAU F C M. Joint optimization of protograph LDPC code pair for joint source and channel coding[J]. IEEE Transactions on Communications, 2018, 66(8): 3255–3267. doi: 10.1109/TCOMM.2018.2814603 CHEN Qiwang, WANG Lin, HONG Shaohua, et al. Integrated design of JSCC scheme based on double protograph LDPC codes system[J]. IEEE Communications Letters, 2019, 23(2): 218–221. doi: 10.1109/LCOMM.2018.2890243 XU Liangliang, WANG Lin, HONG Shaohua, et al. New results on radiography image transmission with unequal error protection using protograph double LDPC codes[C]. The 8th International Symposium on Medical Information and Communication Technology, Firenze, Italy, 2014: 1–4. CHEN Qiwang, WANG Lin, and HONG Shaohua. An image pre-processing approach for JSCC scheme based on double protograph LDPC codes[C]. The 16th International Symposium on Communications and Information Technologies, Qingdao, China, 2016: 109–112. DENG Li, SHI Zhiping, LI Ouxun, et al. Joint coding and adaptive image transmission scheme based on DP-LDPC codes for IoT scenarios[J]. IEEE Access, 2019, 7: 18437–18449. doi: 10.1109/ACCESS.2019.2895368 RAHNAVARD N and FEKRI F. New results on unequal error protection using LDPC codes[J]. IEEE Communications Letters, 2006, 10(1): 43–45. doi: 10.1109/LCOMM.2006.1576564 SHOKROLLAHI A. Raptor codes[J]. IEEE Transactions on Information Theory, 2006, 52(6): 2551–2567. doi: 10.1109/TIT.2006.874390 ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379 陶雄飛, 王躍東, 柳盼. 基于變量節(jié)點更新的LDPC碼加權(quán)比特翻轉(zhuǎn)譯碼算法[J]. 電子與信息學(xué)報, 2016, 38(3): 688–693. doi: 10.11999/JEIT150720TAO Xiongfei, WANG Yuedong, and LIU Pan. Weighted bit-flipping decoding algorithm for LDPC codes based on updating of variable nodes[J]. Journal of Electronics &Information Technology, 2016, 38(3): 688–693. doi: 10.11999/JEIT150720 鄢懿, 張燦, 郭振永, 等. 基于混沌密鑰控制的聯(lián)合信源信道與安全算術(shù)碼編譯碼算法[J]. 電子與信息學(xué)報, 2016, 38(10): 2553–2559. doi: 10.11999/JEIT151429YAN Yi, ZHANG Can, GUO Zhenyong, et al. Joint source channel and security arithmetic coding controlled by chaotic keys[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2553–2559. doi: 10.11999/JEIT151429 呂毅博, 胡偉, 王琳. Beyond-BP譯碼算法綜述: 原理與應(yīng)用[J]. 電子與信息學(xué)報, 2017, 39(6): 1503–1514. doi: 10.11999/JEIT161288Lü Yibo, HU Wei, and WANG Lin. Survey of Beyond-BP decoding algorithms: Theory and applications[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1503–1514. doi: 10.11999/JEIT161288 -