彈性光網(wǎng)絡中時延感知的降級恢復路由與頻譜分配算法
doi: 10.11999/JEIT190759 cstr: 32379.14.JEIT190759
-
大連海事大學信息科學技術(shù)學院 大連 116026
Delay-aware Degradation-recovery Routing and Spectrum Allocation Algorithm in Elastic Optical Networks
-
College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
-
摘要: 移動云計算、人工智能(AI)、5G等新興技術(shù)應用促使彈性光網(wǎng)絡(EON)在骨干傳輸網(wǎng)中發(fā)揮更重要的角色,降級服務(DS)技術(shù)為降低EON的業(yè)務阻塞率、提高頻譜利用率提供了新途徑。該文首先對現(xiàn)有DS算法的資源分配不公、忽略低等級業(yè)務的體驗質(zhì)量(QoE)等問題,建立了以最小化降級頻次、降級等級與傳輸時延損失(TDL)為聯(lián)合優(yōu)化目標的混合整數(shù)線性規(guī)劃(MILP)模型,并提出一種時延感知的降級恢復路由與頻譜分配(DDR-RSA)算法。為提高降級業(yè)務的QoE和運營商收益,在算法的最優(yōu)DS窗口選擇階段中融入降級恢復策略,在保障傳輸數(shù)據(jù)量不變的前提下,將降級業(yè)務向空閑頻域復原,從而提高頻譜效率、減小降級業(yè)務TDL和最大化網(wǎng)絡收益。最后,通過仿真證明了所提算法在業(yè)務阻塞率、網(wǎng)絡收益和降級業(yè)務成功率等方面的優(yōu)勢。
-
關(guān)鍵詞:
- 彈性光網(wǎng)絡 /
- 路由與頻譜分配 /
- 降級服務 /
- 區(qū)分服務 /
- 降級恢復
Abstract: Emerging technology applications such as mobile cloud computing, Artificial Intelligence (AI) and 5G promot Elastic Optical Network (EON) to play an important role in the backbone transmission network. Degraded Service (DS) technology can provide a new way to reduce traffic congestion and improve spectrum utilization in EON. Firstly, considering the problems of unfair resource allocation and neglecting the Quality of Experience (QoE) of low-priority services in existing DS algorithms, a Mixed Integer Linear Program (MILP) model with the joint objective of minimizing downgrade frequency, downgrade level and Transmission Delay Loss (TDL) is established. A Delay-aware Degradation-Recovery Routing and Spectrum Assignment (DRR-RSA) algorithm for degraded recovery is proposed. In order to improve the QoE of downgraded services and the revenue of operators, the strategy of degradation recovery is integrated in the optimal DS-window selection phase of the algorithm. Under the premise of guaranteeing the transmission data quantity unchanged, the degradable services are restored to the free spectrum domain, so as to increase the spectrum efficiency, reduce degraded service TDL and maximize revenue. Finally, the simulation results tesfity that the proposed algorithm has advantages in terms of traffic congestion, revenue and degraded service success-rate. -
表 1 RSA問題符號定義
變量 定義內(nèi)容 $\overline \omega $ 正整數(shù),$\psi $中的業(yè)務優(yōu)先級上界; ${w_r}$ 正整數(shù),$r$所在的起始頻譜槽序號; $f_{u,v}^r$ 二值變量,若$r$經(jīng)過光纖鏈路$e(u,v) \in E$,則$f_{u,v}^r = 1$;否則$f_{u,v}^r = 0$; ${\rho _{i,j}}$ 二值變量,若${r_i}$和${r_j}$經(jīng)過同一段光纖鏈路,且${w_i}$比${w_j}$小,則${\rho _{i,j}} = 1$;否則${\rho _{i,j}} = 0$; $\xi _{s,u}^r$ 二值變量,若$r$的源節(jié)點為$u \in N$,則$\xi _{s,u}^r = 1$;否則,$\xi _{s,u}^1 = 0$; $\xi _{d,v}^r$ 二值變量,若$r$的目的節(jié)點為$v \in N$,則$\xi _{d,v}^r = 1$;否則,$\xi _{d,v}^r = 0$; ${\delta _r}$ 二值變量,若$r$降級,則${\delta _r} = 1$;否則,${\delta _r}{\rm{ = 0}}$; ${\chi _r}$ 正整數(shù),r釋放的頻譜槽數(shù); ${\beta _r}$ 正整數(shù),r恢復的頻譜槽數(shù); ${v_r}$${z_r}$ 正整數(shù),DR后r首/尾頻譜槽序號; $q_k^e$ 正實數(shù),第k個頻譜槽可被r用來DR的起始時間; $t_r^{{\rm{end}}'}$ 正實數(shù),r被降級后的離開時間。 下載: 導出CSV
表 2 啟發(fā)式算法部分的變量
變量 定義內(nèi)容 $u_{t,c}^{l,k}$ 二值變量,若${p_k}$中第$l$條鏈路的第$c$位頻譜槽的第t時隙被占用,則$u_{t,c}^{l,k} = 1$;否則$u_{t,c}^{l,k} = 0$; $u_{t,c}^p$ 二值變量,若${p_k}$的第$c$位頻譜槽的第$t$時隙被占用,則$u_{t,c}^p = 1$;否則,$u_{t,c}^p = 0$; $B_{b,e}^{k,h}$ ${p_k}$的空閑頻譜窗口,其頻譜槽首、末序號為b、e,時長為h,含頻譜槽數(shù)為$n_{b,e}^{k,h} = e - b + 1$; $\tau _{b,e}^{k,h}$ 正整數(shù),$B_{b,e}^{k,h}$為滿足$r$的帶寬尚需的頻譜槽數(shù); ${\chi _{r'}}$ 正實數(shù),降級業(yè)務$r'$釋放的頻譜槽數(shù); $\tau _{b,e}^{{\rm{left}},l}$,$\tau _{b,e}^{{\rm{right}},l}$ 正整數(shù),$B_{b,e}^{k,h}$的每條鏈路上$[b - \tau _{b,e}^{k,h},b)$或$(e,e + \tau _{b,e}^{k,h}]$內(nèi)最少可釋放的頻譜槽數(shù),$l \in {p_k}$; $\tau _{b,e}^{{\rm{left}}}$,$\tau _{b,e}^{{\rm{right}}}$ 正整數(shù),$B_{b,e}^{k,h}$所在路徑上$[b - \tau _{b,e}^{k,h},b)$或$(e,e + \tau _{b,e}^{k,h}]$內(nèi)可釋放的頻譜槽數(shù); ${b_{r'}}$ 正整數(shù),可降級業(yè)務$r'$占用的帶寬; ${\rm{ho}}{{\rm{p}}_{r'}}$ 正整數(shù),$r'$所在路徑的鏈路數(shù); $\theta _{r'}^{{\chi _{r'}}}$ 正實數(shù),$r'$釋放的數(shù)據(jù)量; $\left[ {s,d} \right]$ $r'$占用的頻譜,有$d - s + 1 = {b_{r'}}$; $\theta _t^{r'}$ 正實數(shù),$r'$在第t時隙可恢復的數(shù)據(jù)量; $\theta _{r'}'$ 正實數(shù),$r'$可恢復數(shù)據(jù)量之和; $t_{r'}^{{\rm{end}}'}$ 正實數(shù),$r'$降級后的離去時間。 $[b - \tau _{b,e}^{k,h},b),$$(e,e + \tau _{b,e}^{k,h}]$ $B_{b,e}^{k,h}$的左/右兩側(cè)的降級備選區(qū)間; $[s - {\chi _{r'}},d - {\chi _{r'}}],$$[s + {\chi _{r'}},d + {\chi _{r'}}]$ $r'$左/右兩側(cè)分別可恢復的頻域; 下載: 導出CSV
表 3 DR策略偽碼
輸入:$\psi $, ${{G}}\left( {N,E,C} \right)$. 輸出:$t_{r'}^{{\rm{end}}'}$ and ${\chi _{r'}}$. (1) if ${o_{r'}} < {o_r}$ then (2) $t_{r'}^{{\rm{end}}'} \leftarrow t_{r'}^{{\rm{end}}}$, ${\chi _{r'}} \leftarrow 0$; calculate ${\chi _{r'}}$, $\theta _{r'}^{{\chi _{r'}}}$ in
$[b - \tau _{b,e}^{k,h},b) \cup (e,e + \tau _{b,e}^{k,h}]$;(3) ${\left[ {{{S}}_k^p} \right]_{{\rm{T}} \times \left| {\rm{C}} \right|}} \leftarrow {\left[ {{{U}}_k^l} \right]_{{\rm{T}} \times \left| {\rm{C}} \right|}}$ in
$\left[ {s + {\chi _{r'}},d + {\chi _{r'}}} \right] \cup \left[ {s - {\chi _{r'}},d - {\chi _{r'}}} \right]$;(4) while $t \ge t_r^a$ and $t \le {\overline \alpha _{r'} }$ do (5) for $u_{t,c}^{{p_{r'}}} = 0$ do $\theta _t^{r'} \leftarrow $ Eq.24, $c + + $; end for (6) if $u_{t,c}^{{p_{r'}}} = 1$ then (7) if $c \ge c'$ in $u_{t - 1,c'}^{{p_{r'}}} = 1$ then calculate
$\theta _{r'}' \leftarrow $Eq.25, t++;(8) else then (9) $\theta _{r'}' \leftarrow $ Eqs. 24-25($\left( {c,d - {\chi _{r'}}} \right]$ or
$\left[ {s + {\chi _{r'}},c} \right)$), t++;(10) end if (11) end if (12) if $\theta _{r'}' \ge \theta _{r'}^{ {\chi _{r'} } }$ then return $t_{r'}^{{\rm{end}}'}$ and ${\chi _{r'}}$; end if (13) end while (14) if $\theta _{r'}' < \theta _{r'}^{{\chi _{r'}}}$ then set${\chi _{r'}} = {\chi _{r'}} - 1$; jump to
Line 1; end if(15) if ${\chi _{r'}} = = 0$ then return 0; end if (16) end if 下載: 導出CSV
-
ZHU Zuqing, LU Wei, ZHANG Liang, et al. Dynamic service provisioning in elastic optical networks with hybrid single-/multi-path routing[J]. Journal of Lightwave Technology, 2013, 31(1): 15–22. doi: 10.1109/JLT.2012.2227683 GU Yamei, YUAN Xin, and YOU Shanhong. Blocking performances for fixed/flexible-grid and sub-band conversion in optical networks[C]. 2014 IEEE/CIC International Conference on Communications in China, Shanghai, China, 2014: 116–120. doi: 10.1109/ICCChina.2014.7008254. 朱丹, 徐威遠, 陳文娟, 等. 基于光波分復用網(wǎng)絡的分布式多目標定位系統(tǒng)[J]. 雷達學報, 2019, 8(2): 171–177. doi: 10.12000/JR19028ZHU Dan, XU Weiyuan, CHEN Wenjuan, et al. Distributed multi-target localization system based on optical wavelength division multiplexing network[J]. Journal of Radars, 2019, 8(2): 171–177. doi: 10.12000/JR19028 SAVAS S S, HABIB M F, TORNATORE M, et al. Exploiting degraded-service tolerance to improve performance of telecom networks[C]. Optical Fiber Communication Conference, San Francisco, USA, 2014: W2A. 31. doi: 10.1364/OFC.2014.W2A.31. MUHAMMAD A, CAVDAR C, WOSINSKA L, et al. Service differentiated provisioning in dynamic WDM networks based on set-up delay tolerance[J]. Journal of Optical Communications and Networking, 2013, 5(11): 1250–1261. doi: 10.1364/JOCN.5.001250 SAVAS S S, HABIB M F, TORNATORE M, et al. Network adaptability to disaster disruptions by exploiting degraded-service tolerance[J]. IEEE Communications Magazine, 2014, 52(12): 58–65. doi: 10.1109/MCOM.2014.6979953 VADREVU C S K, WANG Rui, TORNATORE M, et al. Degraded service provisioning in mixed-line-rate WDM backbone networks using multipath routing[J]. IEEE/ACM Transactions on Networking, 2014, 22(3): 840–849. doi: 10.1109/TNET.2013.2259638 ZHONG Zhizhen, LI Jipu, HUA Nan, et al. On QoS-assured degraded provisioning in service-differentiated multi-layer elastic optical networks[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–5. doi: 10.1109/GLOCOM.2016.7842043. SANTOS A S, HOROTA A K, ZHONG Zhizhen, et al. An online strategy for service degradation with proportional QoS in elastic optical networks[C]. 2018 IEEE International Conference on Communications, Kansas City, USA, 2018: 1–6. doi: 10.1109/ICC.2018.8422781. HOU Weigang, GUO Lei, NING Zhaolong, et al. Appropriate service degradability for virtualized inter-data-center optical networks[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, UAE, 2018: 206–212. doi: 10.1109/GLOCOM.2018.8647198. HOU Weigang, NING Zhaolong, GUO Lei, et al. Service degradability supported by forecasting system in optical data center networks[J]. IEEE Systems Journal, 2019, 13(2): 1514–1525. doi: 10.1109/JSYST.2018.2821714 ROJAS J S, GALLóN á R, and CORRALES J C. Personalized service degradation policies on OTT applications based on the consumption behavior of users[C]. The 18th International Conference on Computational Science and Its Applications, Melbourne, Australia, 2018: 543–557. doi: 10.1007/978-3-319-95168-3_37. 于存謙, 張黎, 何榮希. 彈性光網(wǎng)絡基于區(qū)分降級服務和自適應調(diào)制的動態(tài)路由與頻譜分配算法[J]. 電子與信息學報, 2019, 41(1): 38–45. doi: 10.11999/JEIT180075YU Cunqian, ZHANG Li, and HE Rongxi. Dynamic routing and spectrum assignment algorithm based on differentiated degraded-service and adaptive modulation in elastic optical networks[J]. Journal of Electronics &Information Technology, 2019, 41(1): 38–45. doi: 10.11999/JEIT180075 YANG Anjia, WENG Jian, CHENG Nan, et al. DeQoS attack: Degrading quality of service in VANETs and its mitigation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4834–4845. doi: 10.1109/TVT.2019.2905522 PROTO S, VENTURA F, APILETTI D, et al. PREMISES, a scalable data-driven service to predict alarms in slowly-degrading multi-cycle industrial processes[C]. 2019 IEEE International Congress on Big Data, Milan, Italy, 2019: 139–143. doi: 10.1109/BigDataCongress.2019.00032. 張海波, 李虎, 陳善學, 等. 超密集網(wǎng)絡中基于移動邊緣計算的任務卸載和資源優(yōu)化[J]. 電子與信息學報, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592ZHANG Haibo, LI Hu, CHEN Shanxue, et al. Computing offloading and resource optimization in ultra-dense networks with mobile edge computation[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592 -