一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

彈性光網(wǎng)絡中時延感知的降級恢復路由與頻譜分配算法

于存謙 張黎 何榮希 李靖宇

于存謙, 張黎, 何榮希, 李靖宇. 彈性光網(wǎng)絡中時延感知的降級恢復路由與頻譜分配算法[J]. 電子與信息學報, 2020, 42(10): 2420-2428. doi: 10.11999/JEIT190759
引用本文: 于存謙, 張黎, 何榮希, 李靖宇. 彈性光網(wǎng)絡中時延感知的降級恢復路由與頻譜分配算法[J]. 電子與信息學報, 2020, 42(10): 2420-2428. doi: 10.11999/JEIT190759
Cunqian YU, Li ZHANG, Rongxi HE, Jingyu LI. Delay-aware Degradation-recovery Routing and Spectrum Allocation Algorithm in Elastic Optical Networks[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2420-2428. doi: 10.11999/JEIT190759
Citation: Cunqian YU, Li ZHANG, Rongxi HE, Jingyu LI. Delay-aware Degradation-recovery Routing and Spectrum Allocation Algorithm in Elastic Optical Networks[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2420-2428. doi: 10.11999/JEIT190759

彈性光網(wǎng)絡中時延感知的降級恢復路由與頻譜分配算法

doi: 10.11999/JEIT190759 cstr: 32379.14.JEIT190759
基金項目: 國家自然科學基金(61371091, 61801074),中國博士后科學面上基金(2019M661074),遼寧省自然科學基金(2019-BS-021),中央高?;究蒲袠I(yè)務費(3132020205, 3132019221)
詳細信息
    作者簡介:

    于存謙:男,1983年生,博士,副教授,研究方向為光數(shù)據(jù)中心網(wǎng)絡

    張黎:女,1992年生,碩士,研究方向為彈性光網(wǎng)絡

    何榮希:男,1971年生,博士,教授,研究方向為光網(wǎng)絡和無線網(wǎng)絡技術(shù)

    李靖宇:女,1995年生,碩士生,研究方向光數(shù)據(jù)中心網(wǎng)絡

    通訊作者:

    何榮?!?a href="mailto:hrx@dlmu.edu.cn">hrx@dlmu.edu.cn

  • 中圖分類號: TN929.11

Delay-aware Degradation-recovery Routing and Spectrum Allocation Algorithm in Elastic Optical Networks

Funds: The National Natural Science Foundation of China (61371091, 61801074), Chian General Fundation for Postdoctoral Science (2019M661074), The Natural Science Foundation of Liaoning Province (2019-BS-021), The Fundamental Research Funds for The Central Universities (3132020205, 3132019221)
  • 摘要: 移動云計算、人工智能(AI)、5G等新興技術(shù)應用促使彈性光網(wǎng)絡(EON)在骨干傳輸網(wǎng)中發(fā)揮更重要的角色,降級服務(DS)技術(shù)為降低EON的業(yè)務阻塞率、提高頻譜利用率提供了新途徑。該文首先對現(xiàn)有DS算法的資源分配不公、忽略低等級業(yè)務的體驗質(zhì)量(QoE)等問題,建立了以最小化降級頻次、降級等級與傳輸時延損失(TDL)為聯(lián)合優(yōu)化目標的混合整數(shù)線性規(guī)劃(MILP)模型,并提出一種時延感知的降級恢復路由與頻譜分配(DDR-RSA)算法。為提高降級業(yè)務的QoE和運營商收益,在算法的最優(yōu)DS窗口選擇階段中融入降級恢復策略,在保障傳輸數(shù)據(jù)量不變的前提下,將降級業(yè)務向空閑頻域復原,從而提高頻譜效率、減小降級業(yè)務TDL和最大化網(wǎng)絡收益。最后,通過仿真證明了所提算法在業(yè)務阻塞率、網(wǎng)絡收益和降級業(yè)務成功率等方面的優(yōu)勢。
  • 圖  1  降級恢復舉例

    圖  2  4種算法的數(shù)據(jù)量阻塞率

    圖  3  3種算法的降級服務成功率

    圖  4  3種算法的平均延遲時間

    圖  5  4種算法的網(wǎng)絡收益

    圖  6  3種算法的降級等級占比

    表  1  RSA問題符號定義

    變量定義內(nèi)容
    $\overline \omega $正整數(shù),$\psi $中的業(yè)務優(yōu)先級上界;
    ${w_r}$正整數(shù),$r$所在的起始頻譜槽序號;
    $f_{u,v}^r$二值變量,若$r$經(jīng)過光纖鏈路$e(u,v) \in E$,則$f_{u,v}^r = 1$;否則$f_{u,v}^r = 0$;
    ${\rho _{i,j}}$二值變量,若${r_i}$和${r_j}$經(jīng)過同一段光纖鏈路,且${w_i}$比${w_j}$小,則${\rho _{i,j}} = 1$;否則${\rho _{i,j}} = 0$;
    $\xi _{s,u}^r$二值變量,若$r$的源節(jié)點為$u \in N$,則$\xi _{s,u}^r = 1$;否則,$\xi _{s,u}^1 = 0$;
    $\xi _{d,v}^r$二值變量,若$r$的目的節(jié)點為$v \in N$,則$\xi _{d,v}^r = 1$;否則,$\xi _{d,v}^r = 0$;
    ${\delta _r}$二值變量,若$r$降級,則${\delta _r} = 1$;否則,${\delta _r}{\rm{ = 0}}$;
    ${\chi _r}$正整數(shù),r釋放的頻譜槽數(shù);
    ${\beta _r}$正整數(shù),r恢復的頻譜槽數(shù);
    ${v_r}$${z_r}$正整數(shù),DR后r首/尾頻譜槽序號;
    $q_k^e$正實數(shù),第k個頻譜槽可被r用來DR的起始時間;
     $t_r^{{\rm{end}}'}$正實數(shù),r被降級后的離開時間。
    下載: 導出CSV

    表  2  啟發(fā)式算法部分的變量

    變量定義內(nèi)容
    $u_{t,c}^{l,k}$二值變量,若${p_k}$中第$l$條鏈路的第$c$位頻譜槽的第t時隙被占用,則$u_{t,c}^{l,k} = 1$;否則$u_{t,c}^{l,k} = 0$;
    $u_{t,c}^p$二值變量,若${p_k}$的第$c$位頻譜槽的第$t$時隙被占用,則$u_{t,c}^p = 1$;否則,$u_{t,c}^p = 0$;
    $B_{b,e}^{k,h}$${p_k}$的空閑頻譜窗口,其頻譜槽首、末序號為b、e,時長為h,含頻譜槽數(shù)為$n_{b,e}^{k,h} = e - b + 1$;
    $\tau _{b,e}^{k,h}$正整數(shù),$B_{b,e}^{k,h}$為滿足$r$的帶寬尚需的頻譜槽數(shù);
    ${\chi _{r'}}$正實數(shù),降級業(yè)務$r'$釋放的頻譜槽數(shù);
    $\tau _{b,e}^{{\rm{left}},l}$,$\tau _{b,e}^{{\rm{right}},l}$正整數(shù),$B_{b,e}^{k,h}$的每條鏈路上$[b - \tau _{b,e}^{k,h},b)$或$(e,e + \tau _{b,e}^{k,h}]$內(nèi)最少可釋放的頻譜槽數(shù),$l \in {p_k}$;
    $\tau _{b,e}^{{\rm{left}}}$,$\tau _{b,e}^{{\rm{right}}}$正整數(shù),$B_{b,e}^{k,h}$所在路徑上$[b - \tau _{b,e}^{k,h},b)$或$(e,e + \tau _{b,e}^{k,h}]$內(nèi)可釋放的頻譜槽數(shù);
    ${b_{r'}}$正整數(shù),可降級業(yè)務$r'$占用的帶寬;
    ${\rm{ho}}{{\rm{p}}_{r'}}$正整數(shù),$r'$所在路徑的鏈路數(shù);
    $\theta _{r'}^{{\chi _{r'}}}$正實數(shù),$r'$釋放的數(shù)據(jù)量;
    $\left[ {s,d} \right]$$r'$占用的頻譜,有$d - s + 1 = {b_{r'}}$;
    $\theta _t^{r'}$正實數(shù),$r'$在第t時隙可恢復的數(shù)據(jù)量;
    $\theta _{r'}'$正實數(shù),$r'$可恢復數(shù)據(jù)量之和;
    $t_{r'}^{{\rm{end}}'}$正實數(shù),$r'$降級后的離去時間。
    $[b - \tau _{b,e}^{k,h},b),$$(e,e + \tau _{b,e}^{k,h}]$$B_{b,e}^{k,h}$的左/右兩側(cè)的降級備選區(qū)間;
    $[s - {\chi _{r'}},d - {\chi _{r'}}],$$[s + {\chi _{r'}},d + {\chi _{r'}}]$$r'$左/右兩側(cè)分別可恢復的頻域;
    下載: 導出CSV

    表  3  DR策略偽碼

     輸入:$\psi $, ${{G}}\left( {N,E,C} \right)$.
     輸出:$t_{r'}^{{\rm{end}}'}$ and ${\chi _{r'}}$.
     (1) if ${o_{r'}} < {o_r}$ then
     (2)  $t_{r'}^{{\rm{end}}'} \leftarrow t_{r'}^{{\rm{end}}}$, ${\chi _{r'}} \leftarrow 0$; calculate ${\chi _{r'}}$, $\theta _{r'}^{{\chi _{r'}}}$ in
         $[b - \tau _{b,e}^{k,h},b) \cup (e,e + \tau _{b,e}^{k,h}]$;
     (3)  ${\left[ {{{S}}_k^p} \right]_{{\rm{T}} \times \left| {\rm{C}} \right|}} \leftarrow {\left[ {{{U}}_k^l} \right]_{{\rm{T}} \times \left| {\rm{C}} \right|}}$ in
         $\left[ {s + {\chi _{r'}},d + {\chi _{r'}}} \right] \cup \left[ {s - {\chi _{r'}},d - {\chi _{r'}}} \right]$;
     (4)  while $t \ge t_r^a$ and $t \le {\overline \alpha _{r'} }$ do
     (5)   for $u_{t,c}^{{p_{r'}}} = 0$ do $\theta _t^{r'} \leftarrow $ Eq.24, $c + + $; end for
     (6)   if $u_{t,c}^{{p_{r'}}} = 1$ then
     (7)    if $c \ge c'$ in $u_{t - 1,c'}^{{p_{r'}}} = 1$ then calculate
           $\theta _{r'}' \leftarrow $Eq.25, t++;
     (8)    else then
     (9)     $\theta _{r'}' \leftarrow $ Eqs. 24-25($\left( {c,d - {\chi _{r'}}} \right]$ or
            $\left[ {s + {\chi _{r'}},c} \right)$), t++;
     (10)    end if
     (11)   end if
     (12)   if $\theta _{r'}' \ge \theta _{r'}^{ {\chi _{r'} } }$ then return $t_{r'}^{{\rm{end}}'}$ and ${\chi _{r'}}$; end if
     (13)  end while
     (14)  if $\theta _{r'}' < \theta _{r'}^{{\chi _{r'}}}$ then set${\chi _{r'}} = {\chi _{r'}} - 1$; jump to
         Line 1; end if
     (15)  if ${\chi _{r'}} = = 0$ then return 0; end if
     (16) end if
    下載: 導出CSV
  • ZHU Zuqing, LU Wei, ZHANG Liang, et al. Dynamic service provisioning in elastic optical networks with hybrid single-/multi-path routing[J]. Journal of Lightwave Technology, 2013, 31(1): 15–22. doi: 10.1109/JLT.2012.2227683
    GU Yamei, YUAN Xin, and YOU Shanhong. Blocking performances for fixed/flexible-grid and sub-band conversion in optical networks[C]. 2014 IEEE/CIC International Conference on Communications in China, Shanghai, China, 2014: 116–120. doi: 10.1109/ICCChina.2014.7008254.
    朱丹, 徐威遠, 陳文娟, 等. 基于光波分復用網(wǎng)絡的分布式多目標定位系統(tǒng)[J]. 雷達學報, 2019, 8(2): 171–177. doi: 10.12000/JR19028

    ZHU Dan, XU Weiyuan, CHEN Wenjuan, et al. Distributed multi-target localization system based on optical wavelength division multiplexing network[J]. Journal of Radars, 2019, 8(2): 171–177. doi: 10.12000/JR19028
    SAVAS S S, HABIB M F, TORNATORE M, et al. Exploiting degraded-service tolerance to improve performance of telecom networks[C]. Optical Fiber Communication Conference, San Francisco, USA, 2014: W2A. 31. doi: 10.1364/OFC.2014.W2A.31.
    MUHAMMAD A, CAVDAR C, WOSINSKA L, et al. Service differentiated provisioning in dynamic WDM networks based on set-up delay tolerance[J]. Journal of Optical Communications and Networking, 2013, 5(11): 1250–1261. doi: 10.1364/JOCN.5.001250
    SAVAS S S, HABIB M F, TORNATORE M, et al. Network adaptability to disaster disruptions by exploiting degraded-service tolerance[J]. IEEE Communications Magazine, 2014, 52(12): 58–65. doi: 10.1109/MCOM.2014.6979953
    VADREVU C S K, WANG Rui, TORNATORE M, et al. Degraded service provisioning in mixed-line-rate WDM backbone networks using multipath routing[J]. IEEE/ACM Transactions on Networking, 2014, 22(3): 840–849. doi: 10.1109/TNET.2013.2259638
    ZHONG Zhizhen, LI Jipu, HUA Nan, et al. On QoS-assured degraded provisioning in service-differentiated multi-layer elastic optical networks[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–5. doi: 10.1109/GLOCOM.2016.7842043.
    SANTOS A S, HOROTA A K, ZHONG Zhizhen, et al. An online strategy for service degradation with proportional QoS in elastic optical networks[C]. 2018 IEEE International Conference on Communications, Kansas City, USA, 2018: 1–6. doi: 10.1109/ICC.2018.8422781.
    HOU Weigang, GUO Lei, NING Zhaolong, et al. Appropriate service degradability for virtualized inter-data-center optical networks[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, UAE, 2018: 206–212. doi: 10.1109/GLOCOM.2018.8647198.
    HOU Weigang, NING Zhaolong, GUO Lei, et al. Service degradability supported by forecasting system in optical data center networks[J]. IEEE Systems Journal, 2019, 13(2): 1514–1525. doi: 10.1109/JSYST.2018.2821714
    ROJAS J S, GALLóN á R, and CORRALES J C. Personalized service degradation policies on OTT applications based on the consumption behavior of users[C]. The 18th International Conference on Computational Science and Its Applications, Melbourne, Australia, 2018: 543–557. doi: 10.1007/978-3-319-95168-3_37.
    于存謙, 張黎, 何榮希. 彈性光網(wǎng)絡基于區(qū)分降級服務和自適應調(diào)制的動態(tài)路由與頻譜分配算法[J]. 電子與信息學報, 2019, 41(1): 38–45. doi: 10.11999/JEIT180075

    YU Cunqian, ZHANG Li, and HE Rongxi. Dynamic routing and spectrum assignment algorithm based on differentiated degraded-service and adaptive modulation in elastic optical networks[J]. Journal of Electronics &Information Technology, 2019, 41(1): 38–45. doi: 10.11999/JEIT180075
    YANG Anjia, WENG Jian, CHENG Nan, et al. DeQoS attack: Degrading quality of service in VANETs and its mitigation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4834–4845. doi: 10.1109/TVT.2019.2905522
    PROTO S, VENTURA F, APILETTI D, et al. PREMISES, a scalable data-driven service to predict alarms in slowly-degrading multi-cycle industrial processes[C]. 2019 IEEE International Congress on Big Data, Milan, Italy, 2019: 139–143. doi: 10.1109/BigDataCongress.2019.00032.
    張海波, 李虎, 陳善學, 等. 超密集網(wǎng)絡中基于移動邊緣計算的任務卸載和資源優(yōu)化[J]. 電子與信息學報, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592

    ZHANG Haibo, LI Hu, CHEN Shanxue, et al. Computing offloading and resource optimization in ultra-dense networks with mobile edge computation[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592
  • 加載中
圖(6) / 表(3)
計量
  • 文章訪問數(shù):  1958
  • HTML全文瀏覽量:  592
  • PDF下載量:  54
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-09-13
  • 修回日期:  2020-06-15
  • 網(wǎng)絡出版日期:  2020-07-17
  • 刊出日期:  2020-10-13

目錄

    /

    返回文章
    返回