一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

理想格上格基的快速三角化算法研究

張洋 劉仁章 林東岱

張洋, 劉仁章, 林東岱. 理想格上格基的快速三角化算法研究[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 98-104. doi: 10.11999/JEIT190725
引用本文: 張洋, 劉仁章, 林東岱. 理想格上格基的快速三角化算法研究[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 98-104. doi: 10.11999/JEIT190725
Yang ZHANG, Renzhang LIU, Dongdai LIN. Fast Triangularization of Ideal Latttice Basis[J]. Journal of Electronics & Information Technology, 2020, 42(1): 98-104. doi: 10.11999/JEIT190725
Citation: Yang ZHANG, Renzhang LIU, Dongdai LIN. Fast Triangularization of Ideal Latttice Basis[J]. Journal of Electronics & Information Technology, 2020, 42(1): 98-104. doi: 10.11999/JEIT190725

理想格上格基的快速三角化算法研究

doi: 10.11999/JEIT190725 cstr: 32379.14.JEIT190725
詳細(xì)信息
    作者簡(jiǎn)介:

    張洋:男,1991年生,博士生,研究方向?yàn)榛诶硐敫袼惴ǖ拿艽a算法分析

    劉仁章:男,1989年生,博士,研究方向?yàn)楦袼惴案衩艽a算法分析

    林東岱:男,1964年生,研究員,研究方向?yàn)槊艽a學(xué)與安全協(xié)議、網(wǎng)絡(luò)與系統(tǒng)安全、分布式密碼計(jì)算

    通訊作者:

    張洋 zhangyang9091@iie.ac.cn

  • 中圖分類(lèi)號(hào): TP309.7; O157.4

Fast Triangularization of Ideal Latttice Basis

  • 摘要:

    為了提高理想格上格基的三角化算法的效率,該文通過(guò)研究理想格上的多項(xiàng)式結(jié)構(gòu)提出了一個(gè)理想格上格基的快速三角化算法,其時(shí)間復(fù)雜度為O(n3log2B),其中n是格基的維數(shù),B是格基的無(wú)窮范數(shù)?;谠撍惴?,可以得到一個(gè)計(jì)算理想格上格基Smith標(biāo)準(zhǔn)型的確定算法,且其時(shí)間復(fù)雜度也比現(xiàn)有的算法要快。更進(jìn)一步,對(duì)于密碼學(xué)中經(jīng)常所使用的一類(lèi)特殊的理想格,可以用更快的算法將三角化矩陣轉(zhuǎn)化為格基的Hermite標(biāo)準(zhǔn)型。

  • 表  1  本原格向量序列

     輸入:$ {\mathbb{Z}}\left[ {{x}} \right]$中$ f\left( x \right)$和$ g\left( x \right)$,次數(shù)分別為$ n$和$ m$,且$ n>m$;
        (1) 利用擴(kuò)展歐幾里得算法計(jì)算$ {\mathbb{Q}}[x]$上$ {r_i}^{'}\left( x \right)$, $ {s_i}^{'}\left( x \right)$,      $ {t_i}^{'}\left( x \right)$,使得$ {r_i}^{'}\left( x \right) = {r_{i - 2}}^{'}\left( x \right) + {q_i}^{'}\left( x \right){r_{i - 1}}^{'}\left( x \right)$      和${r_i}^{'}\left( x \right) = {s_i}^{'}\left( x \right)f\left( x \right) + $$ {t_i}^{'}\left( x \right)g\left( x \right)$成立,這里      $ i = 1,2, ··· ,l$;
        (2) 計(jì)算每一個(gè)$ {t_i}^{'}\left( x \right)$系數(shù)分母的最小公倍數(shù)$ {C_i}$,       $ i = 1,2, ··· ,l$;
        (3) 令$ {r_i}\left( x \right) = {r_i}^{'}\left( x \right) \cdot {C_i}$為余式序列中第$ i$個(gè)余式,      $ i = 1,2, ··· ,l$;
     輸出:$ {r_1}\left( x \right)$, $ {r_2}\left( x \right)$, ···, $ {r_l}\left( x \right)$
    下載: 導(dǎo)出CSV

    表  2  理想格上格基的三角化

     輸入:本原格向量序列,$ {r_0}\left( x \right)$, $ {r_1}\left( x \right)$, ···, $ {r_l}\left( x \right)$(向量形式為$ {{{r}}_{\bf 0}}$,
        $ {{{r}}_{\bf 1}}$, ···, $ {{{r}}_{ l}}$)
        (1) 令$ {{T}} \leftarrow {0^{n \times n}}$
        (2) 如果$ k \in {I_l},{{ T}_k}\left( x \right) = {r_l}\left( x \right){x^{n - k}},i \leftarrow l - 1$
        (3) 如果$ k \in {I_i}$,
        (a) 計(jì)算$ \phi $和ψ使得
          $ \phi {\rm{lc}}\left( {{r_i}} \right) + \psi {\rm{lc}}\left( {{{{T}}_{n - {n_{i + 1}}}}} \right) = {\rm{gcd}}\left( {\rm{lc}}\left( {{{{T}}_{n - {n_{i + 1}}}}} \right),\right.$
          $\left.{\rm{lc}}\left( {{r_i}} \right) \right) $
        (b) 令$ {{{T}}_{n - {n_i}}}\left( {{x}} \right) = \phi {r_i}\left( x \right) + \psi {{{T}}_{n - {n_{i + 1}}}}\left( x \right){x^{{\delta _i}}}$
        (c) 如果$ {\rm{lc}}\left( {{{{T}}_{n - {n_i}}}} \right) = 1$,則令
          $ {{{T}}_j}\left( x \right) = {{{T}}_{n - {n_i}}}\left( x \right){x^{n - {n_i} - j}}$,
          $ j = 1,2, ··· ,n - {n_i}$,并結(jié)束循環(huán)
        (d) 否則$ {{{T}}_k}\left( x \right) = {{{T}}_{n - {n_i}}}\left( x \right){x^{n - {n_i} - k}}$, $ i \leftarrow i - 1$
        (e) 如果$ i>0$,到(3)開(kāi)始循環(huán),否則結(jié)束循環(huán)
     輸出:$ {{T}}$
    下載: 導(dǎo)出CSV
  • FRUMKIN M A. Complexity questions in number theory[J]. Journal of Soviet Mathematics, 1985, 29(4): 1502–1517. doi: 10.1007/bf02104748
    HUNG M S and ROM W O. An application of the Hermite normal form in integer programming[J]. Linear Algebra and its Applications, 1990, 140: 163–179. doi: 10.1016/0024-3795(90)90228-5
    HAFNER J L and MCCURLEY K S. A rigorous subexponential algorithm for computation of class groups[J]. Journal of the American Mathematical Society, 1989, 2(4): 837–850. doi: 10.1090/S0894-0347-1989-1002631-0
    HARTLEY B and HAWKES T O. Rings, Modules and Linear Algebra[M]. London: Chapman and Hall, 1970: 73.
    MICCIANCIO D. Improving lattice based cryptosystems using the Hermite normal form[C]. International Conference on Cryptography and Lattices, Providence, 2001: 126–145. doi: 10.1007/3-540-44670-2_1.
    LYUBASHEVSKY V and PREST T. Quadratic time, linear space algorithms for Gram-Schmidt orthogonalization and Gaussian sampling in structured lattices[C]. The 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, 2015: 789–815. doi: 10.1007/978-3-662-46800-5_30.
    HAFNER J L and MCCURLEY K S. Asymptotically fast triangulation of matrices over rings[C]. The 1st Annual ACM-SIAM Symposium on Discrete Algorithm, San Francisco, 1990: 197–200.
    LE GALL F. Powers of tensors and fast matrix multiplication[C]. The 39th International Symposium on Symbolic and Algebraic Computation, Kobe, 2014: 296–303. doi: 10.1145/2608628.2608664.
    STORJOHANN A and LABAHN G. Asymptotically fast computation of Hermite normal forms of integer matrices[C]. 1996 International Symposium on Symbolic and Algebraic Computation, Zurich, 1996: 259–266.
    DING Jintai and LINDNER R. Identifying ideal lattices[EB/OL]. http://eprint.iacr.org/2007/322, 2007.
    ZHANG Yang, LIU Renzhang, and LIN Dongdai. Improved key generation algorithm for Gentry’s fully homomorphic encryption scheme[C]. The 20th International Conference on Information Security and Cryptology, Seoul, 2018: 93–111. doi: 10.1007/978-3-319-78556-1_6.
    VON ZUR GATHEN J and GARHARD J. Modern Computer Algebra[M]. 3rd ed. Cambridge: Cambridge University Press, 2013: 313–332.
    劉仁章. 格算法及其密碼學(xué)應(yīng)用[D]. [博士論文], 中國(guó)科學(xué)院大學(xué)數(shù)學(xué)與系統(tǒng)科學(xué)研究院, 2016.
  • 加載中
表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  3199
  • HTML全文瀏覽量:  1040
  • PDF下載量:  75
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-09-19
  • 修回日期:  2019-11-15
  • 網(wǎng)絡(luò)出版日期:  2020-01-01
  • 刊出日期:  2020-01-21

目錄

    /

    返回文章
    返回