基于流量時(shí)空特征的fast-flux僵尸網(wǎng)絡(luò)檢測(cè)方法
doi: 10.11999/JEIT190724 cstr: 32379.14.JEIT190724
-
1.
電子科技大學(xué)計(jì)算機(jī)科學(xué)與工程學(xué)院/網(wǎng)絡(luò)空間安全研究院 成都 611731
-
2.
鵬城實(shí)驗(yàn)室網(wǎng)絡(luò)空間安全研究中心 深圳 518040
-
3.
四川大學(xué)網(wǎng)絡(luò)空間安全學(xué)院 成都 610065
Fast-flux Botnet Detection Method Based on Spatiotemporal Feature of Network Traffic
-
1.
Institute for Cyber Security, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
-
2.
Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen 518040, China
-
3.
College of Cybersecurity, Sichuan University, Chengdu 610065, China
-
摘要:
僵尸網(wǎng)絡(luò)已成為網(wǎng)絡(luò)空間安全的主要威脅之一,雖然目前可通過逆向工程等技術(shù)來(lái)對(duì)其進(jìn)行檢測(cè),但是使用了諸如fast-flux等隱蔽技術(shù)的僵尸網(wǎng)絡(luò)可以繞過現(xiàn)有的安全檢測(cè)并繼續(xù)存活。現(xiàn)有的fast-flux僵尸網(wǎng)絡(luò)檢測(cè)方法主要分為主動(dòng)和被動(dòng)兩種,前者會(huì)造成較大的網(wǎng)絡(luò)負(fù)載,后者存在特征值提取繁瑣的問題。因此為了有效檢測(cè)fast-flux僵尸網(wǎng)絡(luò)并解決傳統(tǒng)檢測(cè)方法中存在的問題,該文結(jié)合卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò),提出了基于流量時(shí)空特征的fast-flux僵尸網(wǎng)絡(luò)檢測(cè)方法。結(jié)合CTU-13和ISOT公開數(shù)據(jù)集的實(shí)驗(yàn)結(jié)果表明,該文所提檢測(cè)方法和其他方法相比,準(zhǔn)確率提升至98.3%,召回率提升至96.7%,精確度提升至97.5%。
-
關(guān)鍵詞:
- 僵尸網(wǎng)絡(luò) /
- Fast-flux /
- 卷積神經(jīng)網(wǎng)絡(luò) /
- 循環(huán)神經(jīng)網(wǎng)絡(luò)
Abstract:Botnets have become one of the main threats to cyberspace security. Although they can be detected by techniques such as reverse engineering, botnets using covert technologies such as fast-flux can successfully bypass existing security detection and continue to survive. The existing fast-flux botnet detection methods are mainly divided into active and passive, the former will cause a large network load, and the latter has the problem of cumbersome feature value extraction. In order to effectively detect fast-flux botnets and alleviate the problems in traditional detection methods, a fast-flux botnet detection method based on spatiotemporal features of network traffic is proposed, combined with convolutional neural networks and recurrent neural network models, the fast-flux botnet is detected from both spatial and temporal dimensions. Experiments performed on the CTU-13 and ISOT public data sets show that compared with other methods, the accuracy rate of the proposed method is 98.3%, the recall rate is 96.7%, and the accuracy is 97.5%.
-
Key words:
- Botnet /
- Fast-flux /
- Convolutional Neural Network (CNN) /
- Recurrent Neural Network (RNN)
-
表 1 實(shí)驗(yàn)硬件環(huán)境參數(shù)表
硬件 具體參數(shù) 服務(wù)器 戴爾PowerEdge R730XD 內(nèi)存 4個(gè)金士頓16 GB 處理器 2個(gè)英特爾E5-2630 硬盤 東芝2 TB 下載: 導(dǎo)出CSV
表 2 實(shí)驗(yàn)軟件環(huán)境參數(shù)表
軟件 版本 操作系統(tǒng) Cenos7 編譯器 IntelliJ Idea GCC 5.2.1 TensorFlow 1.1.1 下載: 導(dǎo)出CSV
表 3 數(shù)據(jù)集組成表
數(shù)據(jù)類型 CTU-13 ISOT數(shù)據(jù)集 自收集 良性DNS流量 5133 0 2874 Fast-FluxDNS流量 4229 4003 0 下載: 導(dǎo)出CSV
-
OR K, RAVIV P, and GUY M. Digging deeper-an in-depth analysis of a fast flux network[EB/OL]. https://www.akamai.com/cn/zh/multimedia/documents/white-paper/digging-deeper-in-depth-analysis-of-fast-flux-network.pdf, 2017. 蔣鴻玲, 邵秀麗, 李耀芳. 基于MapReduce的僵尸網(wǎng)絡(luò)在線檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2013, 35(7): 1732–1738.JIANG Hongling, SHAO Xiuli, and LI Yaofang. Online botnet detection algorithm using MapReduce[J]. Journal of Electronics &Information Technology, 2013, 35(7): 1732–1738. ZANG Xiaodong, GONG Jian, MO Shaohuang, et al. Identifying fast-flux botnet with AGD names at the upper DNS hierarchy[J]. IEEE Access, 2018, 6: 69713–69727. doi: 10.1109/ACCESS.2018.2880884 AL-DUWAIRI B, AL-HAMMOURI A, ALDWAIRI M, et al. GFlux: A google-based system for Fast Flux detection[C]. 2015 IEEE Conference on Communications and Network Security (CNS), Florence, Italy, 2015: 755–756. doi: 10.1109/CNS.2015.7346920. ALIEYAN K, ANBAR M, ALMOMANI A, et al. Botnets detecting attack based on DNS features[C]. 2018 International Arab Conference on Information Technology (ACIT), Werdanye, Lebanon, 2018: 1–4. doi: 10.1109/ACIT.2018.8672582. ALMOMANI A. Fast-flux hunter: A system for filtering online fast-flux botnet[J]. Neural Computing and Applications, 2018, 29(7): 483–493. doi: 10.1007/s00521-016-2531-1 Al NAWASRAH A. Fast flux botnet detection based on adaptive dynamic evolving spiking neural network[D]. [Ph.D. dissertation], University of Salford, 2018. JIANG Cibin and LI J S. Exploring global IP-usage patterns in fast-flux service networks[J]. Journal of Computers, 2017, 12(4): 371–380. WANG Zhi, QIN Meilin, CHEN Mengqi, et al. Hiding fast flux botnet in plain email sight[C]. SecureComm 2017 International Workshops on Security and Privacy in Communication Networks, Niagara Falls, Canada, 2017: 182–197. REIMERS A C, BRUGGEMAN F J, OLIVIER B G, et al. Fast flux module detection using matroid theory[J]. Journal of Computational Biology, 2015, 22(5): 414–424. doi: 10.1089/cmb.2014.0141 ERQUIAGA M J, CATANIA C, and GARCíA S. Detecting DGA malware traffic through behavioral models[C]. 2016 IEEE Biennial Congress of Argentina (ARGENCON), Buenos Aires, Argentina, 2016: 1–6. doi: 10.1109/ARGENCON.2016.7585238. TORABI S, BOUKHTOUTA A, ASSI C, et al. Detecting internet abuse by analyzing passive DNS traffic: A survey of implemented systems[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3389–3415. doi: 10.1109/COMST.2018.2849614 HSU F H, WANG C S, HSU C H, et al. Detect fast-flux domains through response time differences[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(10): 1947–1956. doi: 10.1109/JSAC.2014.2358814 CELIK Z B and MCDANIEL P. Extending detection with privileged information via generalized distillation[C]. 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, USA, 2018: 83–88. doi: 10.1109/SPW.2018.00021. CHEN Wenlin, CHEN Yixin, and WEINBERGER K Q. Fast flux discriminant for large-scale sparse nonlinear classification[C]. The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2014: 621–630. 田生偉, 周興發(fā), 禹龍, 等. 基于雙向LSTM的維吾爾語(yǔ)事件因果關(guān)系抽取[J]. 電子與信息學(xué)報(bào), 2018, 40(1): 200–208. doi: 10.11999/JEIT170402TIAN Shengwei, ZHOU Xingfa, YU Long, et al. Causal relation extraction of Uyghur events based on bidirectional Long Short-term Memory model[J]. Journal of Electronics &Information Technology, 2018, 40(1): 200–208. doi: 10.11999/JEIT170402 CTU University. MCFP Dataset-Malware Capture facility project[EB/OL]. https://mcfp.weebly.com/mcfp-dataset.html, 2018. University of Victoria. ISOT Botnet dataset[EB/OL]. https://www.uvic.ca/engineering/ece/isot/datasets/index.php, 2010. LOMBARDO P, SAELI S, BISIO F, et al. Fast flux service network detection via data mining on passive DNS traffic[C]. The 21st International Conference on Information Security, Guildford, UK, 2018: 463–480. doi: 10.1007/978-3-319-99136-8_25. CHAHAL P S and KHURANA S S. TempR: Application of stricture dependent intelligent classifier for fast flux domain detection[J]. International Journal of Computer Network and Information Security, 2016, 8(10): 37–44. doi: 10.5815/ijcnis.2016.10.05 -