基于邊緣增強引導濾波的光場全聚焦圖像融合
doi: 10.11999/JEIT190723 cstr: 32379.14.JEIT190723
-
太原科技大學電子信息工程學院 太原 030024
Light Field All-in-focus Image Fusion Based on Edge Enhanced Guided Filtering
-
School of Electronic and Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
-
摘要: 受光場相機微透鏡幾何標定精度的影響,4D光場在角度方向上的解碼誤差會造成積分后的重聚焦圖像邊緣信息損失,從而降低全聚焦圖像融合的精度。該文提出一種基于邊緣增強引導濾波的光場全聚焦圖像融合算法,通過對光場數(shù)字重聚焦得到的多幅重聚焦圖像進行多尺度分解、特征層決策圖引導濾波優(yōu)化來獲得最終全聚焦圖像。與傳統(tǒng)融合算法相比,該方法對4D光場標定誤差帶來的邊緣信息損失進行了補償,在重聚焦圖像多尺度分解過程中增加了邊緣層的提取來實現(xiàn)圖像高頻信息增強,并建立多尺度圖像評價模型實現(xiàn)邊緣層引導濾波參數(shù)優(yōu)化,可獲得更高質(zhì)量的光場全聚焦圖像。實驗結(jié)果表明,在不明顯降低融合圖像與原始圖像相似性的前提下,該方法可有效提高全聚焦圖像的邊緣強度和感知清晰度。
-
關鍵詞:
- 4D光場 /
- 全聚焦圖像融合 /
- 引導濾波 /
- 邊緣增強 /
- 參數(shù)優(yōu)化
Abstract: Affected by the micro-lens geometric calibration accuracy of the light field camera, the decoding error of the 4D light field in the angular direction will cause the edge information loss of the integrated refocused image, which will reduce the accuracy of the all-in-focus image fusion. In this paper, a light field all-in-focus image fusion algorithm based on edge-enhanced guided filtering is proposed. Through multi-scale decomposition of the digital refocused images and guided filtering optimization of the feature layer decision map, the final all-in-focus image is obtained. Compared with the traditional fusion algorithm, the edge information loss caused by the 4D light field calibration error is compensated in the presented method. In the step of multi-scale decomposition of the refocused image, the edge layer extraction is added to accomplish the high-frequency information enhancement. Then the multi-scale evaluation model is established to optimize the edge layer’s guided filtering parameters to obtain a better light field all-in-focus image. The experimental results show that the edge intensity and the perceptual sharpness of the all-in-focus image can be improved without significantly reducing the similarity between the all-in-focus image and the original image. -
表 1 Flower圖像不同融合算法性能評價指標比較
Flower IE EI FMI PSI PCA 7.7027 34.8908 0.6903 0.1806 WT 7.7178 39.4788 0.6343 0.1973 Laplace 7.6965 39.3516 0.7317 0.1867 BF 7.6929 39.0181 0.7521 0.1873 GFF 7.7081 38.6164 0.7333 0.1860 G-GRW 7.7047 38.8265 0.7435 0.1851 DSIFT 7.7054 39.4555 0.7494 0.1921 本文 7.7099 40.3353 0.6482 0.2330 下載: 導出CSV
表 2 Cup圖像不同融合算法性能評價指標比較
Cup IE EI FMI PSI PCA 7.6366 39.7368 0.6145 0.1991 WT 7.6453 47.2613 0.5609 0.2768 Laplace 7.6172 46.1445 0.6891 0.2473 BF 7.6191 45.9757 0.6976 0.2478 GFF 7.6365 45.6423 0.6916 0.2400 G-GRW 7.6366 45.7279 0.6976 0.2467 DSIFT 7.6366 45.8104 0.6984 0.2474 本文 7.6366 47.2942 0.6392 0.2857 下載: 導出CSV
表 3 Runner圖像不同融合算法性能評價指標比較
Runner IE EI FMI PSI PCA 7.4581 67.7672 0.7363 0.2844 WT 7.4673 76.1906 0.7286 0.3307 Laplace 7.4664 75.9168 0.7774 0.3260 BF 7.4606 74.4269 0.7834 0.3291 GFF 7.4653 74.4718 0.7835 0.3157 G-GRW 7.4654 74.4898 0.8285 0.3191 DSIFT 7.4664 74.9858 0.8293 0.3247 本文 7.4723 77.5482 0.7610 0.3497 下載: 導出CSV
-
LIU Yu, CHEN Xun, PENG Hu, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191–207. doi: 10.1016/j.inffus.2016.12.001 WU Gaochang, MASIA B, JARABO A, et al. Light field image processing: An overview[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(7): 926–954. doi: 10.1109/JSTSP.2017.2747126 GOSHTASBY A A and NIKOLOV S. Image fusion: Advances in the state of the art[J]. Information Fusion, 2007, 8(2): 114–118. doi: 10.1016/j.inffus.2006.04.001 劉帆, 裴曉鵬, 張靜, 等. 基于優(yōu)化字典學習的遙感圖像融合方法[J]. 電子與信息學報, 2018, 40(12): 2804–2811. doi: 10.11999/JEIT180263LIU Fan, PEI Xiaopeng, ZHANG Jing, et al. Remote sensing image fusion based on optimized dictionary learning[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2804–2811. doi: 10.11999/JEIT180263 謝穎賢, 武迎春, 王玉梅, 等. 基于小波域清晰度評價的光場全聚焦圖像融合[J]. 北京航空航天大學學報, 2019, 45(9): 1848–1854. doi: 10.13700/j.bh.1001-5965.2018.0739XIE Yingxian, WU Yingchun, WANG Yumei, et al. Light field all-in-focus image fusion based on wavelet domain sharpness evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1848–1854. doi: 10.13700/j.bh.1001-5965.2018.0739 肖斌, 唐翰, 徐韻秋, 等. 基于Hess矩陣的多聚焦圖像融合方法[J]. 電子與信息學報, 2018, 40(2): 255–263. doi: 10.11999/JEIT170497XIAO Bin, TANG Han, XU Yunqiu, et al. Multi-focus image fusion based on Hess matrix[J]. Journal of Electronics &Information Technology, 2018, 40(2): 255–263. doi: 10.11999/JEIT170497 ZHANG Yu, BAI Xiangzhi, and WANG Tao. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure[J]. Information Fusion, 2017, 35: 81–101. doi: 10.1016/j.inffus.2016.09.006 SUN Jianguo, HAN Qilong, KOU Liang, et al. Multi-focus image fusion algorithm based on Laplacian pyramids[J]. Journal of the Optical Society of America A, 2018, 35(3): 480–490. doi: 10.1364/JOSAA.35.000480 WAN Tao, ZHU Chenchen, and QIN Zengchang. Multifocus image fusion based on robust principal component analysis[J]. Pattern Recognition Letters, 2013, 34(9): 1001–1008. doi: 10.1016/j.patrec.2013.03.003 LIU Yu, LIU Shuping, and WANG Zengfu. Multi-focus image fusion with dense SIFT[J]. Information Fusion, 2015, 23: 139–155. doi: 10.1016/j.inffus.2014.05.004 LI Shutao, KANG Xudong, and HU Jianwen. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864–2875. doi: 10.1109/TIP.2013.2244222 MA Jinlei, ZHOU Zhiqiang, WANG Bo, et al. Multi-focus image fusion based on multi-scale focus measures and generalized random walk[C]. The 36th Chinese Control Conference, Dalian, China, 2017: 5464–5468. doi: 10.23919/ChiCC.2017.8028223. NG R, LEVOY M, BREDIF M, et al. Light field photography with a hand-held plenoptic camera[R]. Stanford Tech Report CTSR 2005-02, 2005. SOTAK JR G E and BOYER K L. The laplacian-of-gaussian kernel: A formal analysis and design procedure for fast, accurate convolution and full-frame output[J]. Computer Vision, Graphics, and Image Processing, 1989, 48(2): 147–189. doi: 10.1016/s0734-189x(89)80036-2 HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213 YOON Y, JEON H G, YOO D, et al. Light-field image super-resolution using convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24(6): 848–852. doi: 10.1109/LSP.2017.2669333 SCHMIDT M, LE ROUX N, and BACH F. Minimizing finite sums with the stochastic average gradient[J]. Mathematical Programming, 2017, 162(1/2): 83–112. doi: 10.1007/s10107-016-1030-6 LIU Zheng, BLASCH E, XUE Zhiyun, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 94–109. doi: 10.1109/tpami.2011.109 JUNEJA M and SANDHU P S. Performance evaluation of edge detection techniques for images in spatial domain[J]. International Journal of Computer Theory and Engineering, 2009, 1(5): 614–621. doi: 10.7763/IJCTE.2009.V1.100 HAGHIGHAT M and RAZIAN M A. Fast-FMI: Non-reference image fusion metric[C]. The 8th IEEE International Conference on Application of Information and Communication Technologies, Astana, Kazakhstan, 2014: 1–3. doi: 10.1109/ICAICT.2014.7036000. FEICHTENHOFER C, FASSOLD H, and SCHALLAUER P. A perceptual image sharpness metric based on local edge gradient analysis[J]. IEEE Signal Processing Letters, 2013, 20(4): 379–382. doi: 10.1109/LSP.2013.2248711 -