一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于深度學(xué)習(xí)的故障診斷方法綜述

文成林 呂菲亞

文成林, 呂菲亞. 基于深度學(xué)習(xí)的故障診斷方法綜述[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 234-248. doi: 10.11999/JEIT190715
引用本文: 文成林, 呂菲亞. 基于深度學(xué)習(xí)的故障診斷方法綜述[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 234-248. doi: 10.11999/JEIT190715
Chenglin WEN, Feiya Lü. Review on Deep Learning Based Fault Diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(1): 234-248. doi: 10.11999/JEIT190715
Citation: Chenglin WEN, Feiya Lü. Review on Deep Learning Based Fault Diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(1): 234-248. doi: 10.11999/JEIT190715

基于深度學(xué)習(xí)的故障診斷方法綜述

doi: 10.11999/JEIT190715 cstr: 32379.14.JEIT190715
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(U1509203, 61751304, 61573137, 61673160),浙江省重點(diǎn)項(xiàng)目(LZ16F030002)
詳細(xì)信息
    作者簡(jiǎn)介:

    文成林:男,1963年生,教授,主要研究方向?yàn)楣收显\斷,多目標(biāo)跟蹤,信息融合等

    呂菲亞:女,1991年生,博士,講師,主要研究方向?yàn)楣收显\斷,機(jī)器學(xué)習(xí),信息融合等

    通訊作者:

    呂菲亞 lvfeiya0215@126.com

  • 1)本文所討論的故障實(shí)時(shí)診斷與預(yù)測(cè)技術(shù)均假定故障可被感知并能被分離,可被感知是指故障在一定程度上影響系統(tǒng)的狀態(tài)和輸出,能被分離是指依據(jù)現(xiàn)有信息可以指示故障發(fā)生部位和發(fā)生機(jī)理。2)機(jī)理分析方法指是通過對(duì)系統(tǒng)內(nèi)部原因/機(jī)理的分析研究,從而找出其發(fā)展變化規(guī)律的一種科學(xué)研究方法,依賴于因果關(guān)系的提取與表征,適用于輸入、輸出及狀態(tài)變量較少的系統(tǒng)[6],包括分析方法和統(tǒng)計(jì)方法。3)特征工程指的是把原始數(shù)據(jù)轉(zhuǎn)變?yōu)槟P偷挠?xùn)練數(shù)據(jù)的過程,目的是獲取更好的訓(xùn)練數(shù)據(jù)特征,包括特征構(gòu)建、特征提取、特征選擇3個(gè)部分。4)雖然神經(jīng)網(wǎng)絡(luò)可以以任意精度逼近非線性函數(shù)[18],但是面對(duì)復(fù)雜工業(yè)過程的高維、非高斯分布、非線性、時(shí)變、多模態(tài)等特性,傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)方法多是從逼近論的角度擬合監(jiān)測(cè)數(shù)據(jù)并進(jìn)行特征提取,受限于網(wǎng)絡(luò)結(jié)構(gòu)訓(xùn)練算法和計(jì)算復(fù)雜度的影響,通常只是設(shè)置2到3個(gè)隱層,降低了逼近的精度。
  • 5)假設(shè)特征圖長(zhǎng)寬相同.
  • 中圖分類號(hào): TP274

Review on Deep Learning Based Fault Diagnosis

Funds: The National Natural Science Foundation of China (U1509203, 61751304, 61573137, 61673160), Zhejiang Provincial Foundation (LZ16F030002)
  • 摘要:

    海量高維度的過程測(cè)量信息給傳統(tǒng)的故障診斷算法帶來極大的計(jì)算復(fù)雜度和建模復(fù)雜度,且傳統(tǒng)診斷算法存在難以利用高階量進(jìn)行在線估計(jì)的不足。鑒于深度學(xué)習(xí)技術(shù)強(qiáng)大的數(shù)據(jù)表示學(xué)習(xí)和分析能力,基于深度學(xué)習(xí)的故障診斷引起了工業(yè)界和學(xué)術(shù)界的廣泛關(guān)注,并促使智能過程控制更加自動(dòng)化和有效。該文從方法上將基于深度學(xué)習(xí)的故障診斷技術(shù)分為:基于棧式自編碼的故障診斷方法、基于深度置信網(wǎng)絡(luò)的故障診斷方法、基于卷積神經(jīng)網(wǎng)絡(luò)的故障診斷方法及基于循環(huán)神經(jīng)網(wǎng)絡(luò)的故障診斷方法4類,分別進(jìn)行了回顧和總結(jié),最后從數(shù)據(jù)預(yù)處理、深度網(wǎng)絡(luò)設(shè)計(jì)和決策3個(gè)層面對(duì)這一領(lǐng)域進(jìn)行展望,提出了“集成創(chuàng)新”、“數(shù)據(jù)+知識(shí)”和“多技術(shù)融合”等故障診斷思想,闡明基于深度學(xué)習(xí)技術(shù)進(jìn)行復(fù)雜系統(tǒng)的故障診斷仍具有巨大潛力。

  • 圖  1  數(shù)據(jù)驅(qū)動(dòng)的故障診斷框架

    圖  2  基于深度學(xué)習(xí)的故障診斷研究思路匯總

    圖  3  基于深度學(xué)習(xí)的故障診斷方法分類

    圖  4  棧式自編碼網(wǎng)絡(luò)的結(jié)構(gòu)

    圖  5  基于受限玻爾茲曼機(jī)的深度網(wǎng)絡(luò)結(jié)構(gòu)

    圖  6  卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)

    圖  7  循環(huán)神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)

  • 國(guó)務(wù)院. 國(guó)家中長(zhǎng)期科學(xué)和技術(shù)發(fā)展規(guī)劃綱要(2006–2020年)[R]. 北京: 國(guó)務(wù)院, 2006.

    China, Outline of the national medium and long term science and technology development program (2006–2020) [R], 2006.
    張穎偉, QIN S J. 復(fù)雜工業(yè)過程的故障診斷[M]. 沈陽(yáng): 東北大學(xué)出版社, 2007, 10–20.

    ZHANG Yingwei and QIN S J. Fault Diagnosis of Complex Industrial Processes [M]. Shenyang: Northeastern University Press, 2006, 10–20.
    周東華, 胡艷艷. 動(dòng)態(tài)系統(tǒng)的故障診斷技術(shù)[J]. 自動(dòng)化學(xué)報(bào), 2009, 35(6): 748–758.

    ZHOU Donghua and Hu Yanyan. Fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2009, 35(6): 748–758.
    吳斌, 于春梅, 李強(qiáng). 過程工業(yè)故障診斷[M]. 北京: 科學(xué)出版社, 2012.

    WU Bin, YU Chunmei, and LI Qiang. Fault Diagnosis for Process Industry[M]. Beijing: Science Press, 2012.
    工業(yè)和信息化部. 高端裝備制造業(yè)“十二五”發(fā)展規(guī)劃[R]. 北京: 工業(yè)和信息化部, 2012.

    Ministry of Industry and Information Technology. Twelfth Five-year Development Plan of High-end Equipment Manufacturing Industry[R]. 2012.
    文成林, 呂菲亞, 包哲靜, 等. 基于數(shù)據(jù)驅(qū)動(dòng)的微小故障診斷方法綜述[J]. 自動(dòng)化學(xué)報(bào), 2016, 42(9): 1285–1299. doi: 10.16383/j.aas.2016.c160105

    WEN Chenlin, Lü Feiya, BAO Zhejing, et al. A review of data driven-based incipient fault diagnosis[J]. Acta Automatica Sinica, 2016, 42(9): 1285–1299. doi: 10.16383/j.aas.2016.c160105
    HIMMELBLAU D M. Fault Detection and Diagnosis in Chemical and Petrochemical Processes[M]. New York: Elsevier Science Ltd, 1978: 45–70.
    GERTLER J. Fault Detection and Diagnosis[M]. London, England: Springer, 2015: 5–10.
    張杰, 陽(yáng)憲惠. 多變量統(tǒng)計(jì)過程控制[M]. 北京: 化學(xué)工業(yè)出版社, 2000: 1–23.

    ZHANG Jie and YANG Xianhui. Multivariate Statistical Process Control[M]. Beijing: Chemical Industry Press, 2000: 1–23.
    周東華, 劉洋, 何瀟. 閉環(huán)系統(tǒng)故障診斷技術(shù)綜述[J]. 自動(dòng)化學(xué)報(bào), 2013, 39(11): 1933–1943. doi: 10.3724/SP.J.1004.2013.01933

    ZHOU Donghua, LIU Yang, and HE Xiao. Review on fault diagnosis techniques for closed-loop systems[J]. Acta Automatica Sinica, 2013, 39(11): 1933–1943. doi: 10.3724/SP.J.1004.2013.01933
    LEI Yaguo, JIA Feng, LIN Jing, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137–3147. doi: 10.1109/TIE.2016.2519325
    周東華, 李鋼, 李元. 數(shù)據(jù)驅(qū)動(dòng)的工業(yè)過程故障診斷技術(shù)——基于主元分析與偏最小二乘的方法[M]. 北京: 科學(xué)出版社, 2011: 1–15.

    ZHOU Donghua, LI Gang, and LI Yuan. Data-driven Industrial Process Fault Diagnosis Technology [M]. Beijing: Science Press, 2011: 1–15.
    王福利, 常玉清, 王姝, 等. 多模態(tài)復(fù)雜工業(yè)過程監(jiān)測(cè)及故障診斷[M]. 北京: 科學(xué)出版社, 2016: 1–5.

    WANG Fuli, CHANG Yuqing, WANG Yi, et al. Monitoring and Fault Diagnosis of Multi-mode Complex Industrial Processes[M]. Beijing: Science Press, 2016: 1–5.
    YIN Shen, DING S X, XIE Xiaochen, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6418–6428. doi: 10.1109/TIE.2014.2301773
    YIN Shen, Li Xianwei, Gao Huijun, et al. Data-based techniques focused on modern industry: An overview[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 657–667. doi: 10.1109/TIE.2014.2308133
    LIU Ruonan, YANG Boyuan, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33–47. doi: 10.1016/j.ymssp.2018.02.016
    ZHAO Rui, YAN Ruqiang, CHEN Zhenghua, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213–237. doi: 10.1016/j.ymssp.2018.05.050
    HORNIK K, STINCHCOMBE M, and WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359–366. doi: 10.1016/0893-6080(89)90020-8
    CHANG C H. Deep and shallow architecture of multilayer neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2477–2486. doi: 10.1109/TNNLS.2014.2387439
    HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. doi: 10.1126/science.1127647
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    GOODFELLOW I, BENGIO Y, and COURVILLE A. Deep Learning[M]. Cambridge, Massachusetts: MIT Press, 2016: 1–50.
    SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85–117. doi: 10.1016/j.neunet.2014.09.003
    LEVINE S, PASTOR P, KRIZHEVSKY A, et al. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection[J]. The International Journal of Robotics Research, 2018, 37(4/5): 421–436. doi: 10.1177/0278364917710318
    KERMANY D S, GOLDBAUM M, CAI Wenjia, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122–1131. doi: 10.1016/j.cell.2018.02.010
    YOUNG T, HAZARIKA D, PORIA S, et al. Recent trends in deep learning based natural language processing[J]. IEEE Computational Intelligence Magazine, 2018, 13(3): 55–75. doi: 10.1109/MCI.2018.2840738
    DENG Li and LIU Yang. Deep Learning in Natural Language Processing[M]. Singapore: Springer, 2018: 1–120.
    BENGIO Y, COURVILLE A, and VINCENT P. Representation learning: A review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798–1828. doi: 10.1109/TPAMI.2013.50
    JIA Feng, LEI Yaguo, LIN Jing, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 303–315. doi: 10.1016/j.ymssp.2015.10.025
    CHEN Zhiqiang, CHEN Xudong, LI Chuan, et al. Vibration-based gearbox fault diagnosis using deep neural networks[J]. Journal of Vibroengineering, 2017, 19(4): 2475–2496. doi: 10.21595/jve.2016.17267
    WANG J, MA Y, ZHANG L, et al. Deep learning for smart manufacturing: Methods and applications[J]. Journal of Manufacturing Systems, 2018, 48: 144–156. doi: 10.1016/j.jmsy.2018.01.003
    GAN Meng, WANG Cong, and ZHU Chang’an. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 92–104. doi: 10.1016/j.ymssp.2015.11.014
    SOHAIB M, KIM C H, and KIM J M. A hybrid feature model and deep-learning-based bearing fault diagnosis[J]. Sensors, 2017, 17(12): 2876. doi: 10.3390/s17122876
    MCCULLOCH W S and PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115–133. doi: 10.1007/BF02478259
    WATANABE K, MATSUURA I, ABE M, et al. Incipient fault diagnosis of chemical processes via artificial neural networks[J]. AICHE Journal, 1989, 35(11): 1803–1812. doi: 10.1002/aic.690351106
    CHOW M Y, MANGUM P, and THOMAS R J. Incipient fault detection in DC machines using a neural network[C]. The 22nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1988: 706–709. doi: 10.1109/ACSSC.1988.754641.
    QI Yumei, SHEN Changqing, WANG Dong, et al. Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery[J]. IEEE Access, 2017, 5: 15066–15079. doi: 10.1109/ACCESS.2017.2728010
    Lü Feiya, WEN Chenglin, LIU Meiqin, et al. Higher-order correlation-based multivariate statistical process monitoring[J]. Journal of Chemometrics, 2018, 32(8): e3033. doi: 10.1002/cem.3033
    Lü Feiya, WEN Chenglin, and LIU Meiqin. Representation learning based adaptive multimode process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 181: 95–104. doi: 10.1016/j.chemolab.2018.07.011
    Lü Feiya, WEN Chenglin, BAO Zejing, et al. Fault diagnosis based on deep learning[C]. 2016 American Control Conference, Boston, USA 2016: 6851–6856. doi: 10.1109/ACC.2016.7526751.
    LIAO Linxia, JIN Wenjing, and PAVEL R. Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7076–7083. doi: 10.1109/TIE.2016.2586442
    SHAO Haidong, JIANG Hongkai, ZHANG Haizhou, et al. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2727–2736. doi: 10.1109/TIE.2017.2745473
    CHEN Zhuyun and LI Weihua. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1693–1702. doi: 10.1109/TIM.2017.2669947
    RAINA R, BATTLE A, LEE H, et al. Self-taught learning: Transfer learning from unlabeled data[C]. The 24th International Conference on Machine Learning, Corvalis, USA, 2007: 759–766. doi: 10.1145/1273496.1273592.
    VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. The Journal of Machine Learning Research, 2010, 11: 3371–3408.
    THIRUKOVALLURU R, DIXIT S, SEVAKULA R K, et al. Generating feature sets for fault diagnosis using denoising stacked auto-encoder[C]. 2016 IEEE International Conference on Prognostics and Health Management, Ottawa, Canada, 2016: 1–7. doi: 10.1109/ICPHM.2016.7542865.
    LU Chen, WANG Zhenya, QIN Weili, et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130: 377–388. doi: 10.1016/j.sigpro.2016.07.028
    JIA Feng, LEI Yaguo, GUO Liang, et al. A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines[J]. Neurocomputing, 2018, 272: 619–628. doi: 10.1016/j.neucom.2017.07.032
    MENG Zong, ZHAN Xuyang, LI Jing, et al. An enhancement denoising autoencoder for rolling bearing fault diagnosis[J]. Measurement, 2018, 130: 448–454. doi: 10.1016/j.measurement.2018.08.010
    SUN Wenjun, SHAO Siyu, ZHAO Rui, et al. A sparse auto-encoder-based deep neural network approach for induction motor faults classification[J]. Measurement, 2016, 89: 171–178. doi: 10.1016/j.measurement.2016.04.007
    LIU Han, ZHOU Jianzhong, XU Yanhe, et al. Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks[J]. Neurocomputing, 2018, 315: 412–424. doi: 10.1016/j.neucom.2018.07.034
    MA Meng, SUN Chuang, and CHEN Xuefeng. Deep coupling autoencoder for fault diagnosis with multimodal sensory data[J]. IEEE Transactions on Industrial Informatics, 2018, 14(3): 1137–1145. doi: 10.1109/TII.2018.2793246
    WEN Long, GAO Liang, and LI Xinyu. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(1): 136–144. doi: 10.1109/TSMC.2017.2754287
    Lü Feiya, WEN Chenglin, LIU Meiqin, et al. Weighted time series fault diagnosis based on a stacked sparse autoencoder[J]. Journal of Chemometrics, 2017, 31(9): e2912. doi: 10.1002/cem.2912
    Lü F, WEN C, and LIU M. Dynamic reconstruction based representation Learning for multivariable process monitoring[J]. Journal of Process Control, 2019, 81: 112–115. doi: 10.1016/j.chemolab.2018.07.011
    HINTON G E and SEJNOWSKI T J. Learning and relearning in Boltzmann machines[J]. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1986, 1: 282–317.
    NAIR V and HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]. The 27th International Conference on Machine Learning, Haifa, Israel, 2010: 807–814.
    HINTON G. A Practical Guide to Training Restricted Boltzmann machines[M]. MONTAVON G, ORR G B, and MüLLER K R. Neural Networks: Tricks of the Trade. 2nd ed. Berlin, Heidelberg: Springer, 2012: 599–619. doi: 10.1007/978-3-642-35289-8_32.
    MOHAMED A R, DAHL G E, and HINTON G. Acoustic modeling using deep belief networks[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 14–22. doi: 10.1109/tasl.2011.2109382
    HUANG Wenhao, SONG Guojie, Hong Haikun, et al. Deep architecture for traffic flow prediction: Deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2191–2201. doi: 10.1109/TITS.2014.2311123
    SALAKHUTDINOV R and HINTON G. Deep Boltzmann machines[C]. The 12th International Conference on Artificial Intelligence and Statistics, Florida, USA, 2009: 448–455.
    ZHANG Chunyang, CHEN C L P, GAN Min, et al. Predictive deep Boltzmann machine for multiperiod wind speed forecasting[J]. IEEE Transactions on Sustainable Energy, 2015, 6(4): 1416–1425. doi: 10.1109/TSTE.2015.2434387
    LE ROUX N and BENGIO Y. Representational power of restricted Boltzmann machines and deep belief networks[J]. Neural Computation, 2008, 20(6): 1631–1649. doi: 10.1162/neco.2008.04-07-510
    SHAO Haidong, JIANG Hongkai, ZHANG Xun, et al. Rolling bearing fault diagnosis using an optimization deep belief network[J]. Measurement Science and Technology, 2015, 26(11): 115002. doi: 10.1088/0957-0233/26/11/115002
    LI Chuan, SáNCHEZ R V, ZURITA G, et al. Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis[J]. Neurocomputing, 2015, 168: 119–127. doi: 10.1016/j.neucom.2015.06.008
    LI Chuan, SáNCHEZ R V, ZURITA G, et al. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals[J]. Mechanical Systems and Signal Processing, 2016, 76–77: 283–293. doi: 10.1016/j.ymssp.2016.02.007
    TAO Jie, LIU Yilun, and YANG Dalian. Bearing fault diagnosis based on deep belief network and multisensor information fusion[J]. Shock and Vibration, 2016, 201: 9306205. doi: 10.1155/2016/9306205
    WANG Lukun, ZHAO Xiaoying, PEI Jiangnan, et al. Transformer fault diagnosis using continuous sparse autoencoder[J]. SpringerPlus, 2016, 5: 448. doi: 10.1186/s40064-016-2107-7
    SHAO Haidong, JIANG Hongkai, WANG Fuan, et al. Rolling bearing fault diagnosis using adaptive deep belief network with dual-tree complex wavelet packet[J]. ISA Transactions, 2017, 69: 187–201. doi: 10.1016/j.isatra.2017.03.017
    TRAN V T, ALTHOBIANI F, and BALL A. An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks[J]. Expert Systems with Applications, 2014, 41(9): 4113–4122. doi: 10.1016/j.eswa.2013.12.026
    ZHANG Zhanpeng and ZHAO Jinsong. A deep belief network based fault diagnosis model for complex chemical processes[J]. Computers & Chemical Engineering, 2017, 107: 395–407. doi: 10.1016/j.compchemeng.2017.02.041
    ZHANG Chong, LIM P, QIN A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2306–2318. doi: 10.1109/TNNLS.2016.2582798
    ZHAO Guangquan, ZHANG Guohui, LIU Yuefeng, et al. Lithium-ion battery remaining useful life prediction with deep belief network and relevance vector machine[C]. 2017 IEEE International Conference on Prognostics and Health Management, Dallas, USA, 2017: 7–13. doi: 10.1109/ICPHM.2017.7998298.
    RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211–252. doi: 10.1007/s11263-015-0816-y
    GU Jiuxiang, WANG Zhenhua, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354–377. doi: 10.1016/j.patcog.2017.10.013
    CHEN Zhiqiang, Li Chuan, and SáNCHEZ R V. Gearbox fault identification and classification with convolutional neural networks[J]. Shock and Vibration, 2015, 2015: 390134. doi: 10.1155/2015/390134
    JANSSENS O, SLAVKOVIKJ V, VERVISCH B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound and Vibration, 2016, 377: 331–345. doi: 10.1016/j.jsv.2016.05.027
    DING Xiaoxi and HE Qingbo. Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(8): 1926–1935. doi: 10.1109/TIM.2017.2674738
    WANG Jinjiang, ZHUANG Junfei, DUAN Lixiang, et al. A multi-scale convolution neural network for featureless fault diagnosis[C]. 2016 International Symposium on Flexible Automation, Cleveland, USA, 2016: 65–70. doi: 10.1109/ISFA.2016.7790137.
    GUO Xiaojie, CHEN Liang, and SHEN Changqing. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement, 2016, 93: 490–502. doi: 10.1016/j.measurement.2016.07.054
    BABU G S, ZHAO Peilin, and LI Xiaoli. Deep convolutional neural network based regression approach for estimation of remaining useful life[C]. The 21st International Conference on Database Systems for Advanced Applications, Dallas, USA, 2016: 214–228. doi: 10.1007/978-3-319-32025-0_14.
    WEIMER D, SCHOLZ-REITER B, and SHPITALNI M. Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection[J]. CIRP Annals, 2016, 65(1): 417–420. doi: 10.1016/j.cirp.2016.04.072
    KIRANYAZ S, INCE T, and GABBOUJ M. Real-time patient-specific ECG classification by 1-D convolutional neural networks[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(3): 664–675. doi: 10.1109/TBME.2015.2468589
    ABDELJABER O, AVCI O, KIRANYAZ S, et al. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks[J]. Journal of Sound and Vibration, 2017, 388: 154–170. doi: 10.1016/j.jsv.2016.10.043
    INCE T, KIRANYAZ S, EREN L, et al. Real-time motor fault detection by 1-D convolutional neural networks[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7067–7075. doi: 10.1109/TIE.2016.2582729
    JING Luyang, ZHAO Ming, LI Pin, et al. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J]. Measurement, 2017, 111: 1–10. doi: 10.1016/j.measurement.2017.07.017
    LI Dan, CHEN Dacheng, SHI Lei, et al. MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks[J]. arXiv preprint arXiv:1901.04997, 2019.
    LIU Jinhai, QU Fuming, HONG Xiaowei, et al. A small-sample wind Turbine fault detection method with synthetic fault data using generative adversarial nets[J]. IEEE Transactions on Industrial Informatics, 2019, 15(7): 3877–3888. doi: 10.1109/TII.2018.2885365
    WANG Zirui, WANG Jun, and WANG Youren. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition[J]. Neurocomputing, 2018, 310: 213–222. doi: 10.1016/j.neucom.2018.05.024
    LI Xiang, ZHANG Wei, and DING Qian. Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5525–5534. doi: 10.1109/TIE.2018.2868023
    LEE Y O, JO J, and HWANG J. Application of deep neural network and generative adversarial network to industrial maintenance: A case study of induction motor fault detection[C]. 2017 IEEE International Conference on Big Data, Boston, USA, 2017: 3248–3253. doi: 10.1109/BigData.2017.8258307.
    LU Ping, MORRIS M, BRAZELL S, et al. Using generative adversarial networks to improve deep-learning fault interpretation networks[J]. The Leading Edge, 2018, 37(8): 578–583. doi: 10.1190/tle37080578.1
    GILES C L, MILLER C B, CHEN D, et al. Learning and extracting finite state automata with second-order recurrent neural Networks[J]. Neural Computation, 1992, 4(3): 393–405. doi: 10.1162/neco.1992.4.3.393
    FUNAHASHI K I and NAKAMURA Y. Approximation of dynamical systems by continuous time recurrent neural networks[J]. Neural Networks, 1993, 6(6): 801–806. doi: 10.1016/S0893-6080(05)80125-X
    SAK H, SENIOR A, and BEAUFAYS F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling[C]. The 15th Annual Conference of the International Speech Communication Association, Singapore, 2014: 338–342.
    CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv:1412.3555, 2014.
    GUO Liang, LI Naipeng, JIA Feng, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240: 98–109. doi: 10.1016/j.neucom.2017.02.045
    MALHOTRA P, TV V, RAMAKRISHNAN A, et al. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder[C]. The 1st ACM SIGKDD Workshop on Machine Learning for Prognostics and Health Management, San Francisco, USA, 2016.
    YUAN Mei, WU Yuting, and LIN Li. Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network[C]. 2016 IEEE International Conference on Aircraft Utility Systems, Beijing, China, 2016: 135–140. doi: 10.1109/AUS.2016.7748035.
    LIU Han, ZHOU Jianzhong, ZHENG Yang, et al. Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders[J]. ISA Transactions, 2018, 77: 167–178. doi: 10.1016/j.isatra.2018.04.005
    LI Xiaochuan, DUAN Fang, LOUKOPOULOS P, et al. Canonical variable analysis and long short-term memory for fault diagnosis and performance estimation of a centrifugal compressor[J]. Control Engineering Practice, 2018, 72: 177–191. doi: 10.1016/j.conengprac.2017.12.006
    JIANG Hongkai, LI Xingqiu, SHAO Haidong, et al. Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network[J]. Measurement Science and Technology, 2018, 29(6): 065107. doi: 10.1088/1361-6501/aab945
    YANG Rui, HUANG Mengjie, LU Qidong, et al. Rotating machinery fault diagnosis using long-short-term memory recurrent neural network[J]. IFAC-PapersOnLine, 2018, 51(24): 228–232. doi: 10.1016/j.ifacol.2018.09.582
    ZHAO Rui, YAN Ruqiang, WANG Jinjiang, et al. Learning to monitor machine health with convolutional bi-directional LSTM networks[J]. Sensors, 2017, 17(2): 273. doi: 10.3390/s17020273
  • 加載中
圖(7)
計(jì)量
  • 文章訪問數(shù):  15957
  • HTML全文瀏覽量:  8201
  • PDF下載量:  2499
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-09-17
  • 修回日期:  2019-12-02
  • 網(wǎng)絡(luò)出版日期:  2019-12-10
  • 刊出日期:  2020-01-21

目錄

    /

    返回文章
    返回