基于卷積長短時記憶網(wǎng)絡(luò)的心律失常分類方法
doi: 10.11999/JEIT190712 cstr: 32379.14.JEIT190712
-
沈陽工業(yè)大學(xué)電氣工程學(xué)院 沈陽 110870
Arrhythmia Classification Based on Convolutional Long Short Term Memory Network
-
School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
-
摘要:
心律失常等慢性心血管疾病嚴(yán)重影響人類健康,采用心電信號(ECG)實(shí)現(xiàn)心律失常自動分類可有效提高該類疾病的診斷效率,降低人工成本。為此,該文基于1維心電信號,提出一種改進(jìn)的長短時記憶網(wǎng)絡(luò)(LSTM)方法實(shí)現(xiàn)心律失常自動分類。該方法首先設(shè)計(jì)深層卷積神經(jīng)網(wǎng)絡(luò)(CNN)對心電信號進(jìn)行深度編碼,提取心電信號形態(tài)特征。其次,搭建長短時記憶分類網(wǎng)絡(luò)實(shí)現(xiàn)基于心電信號特征的心律失常自動分類?;贛IT-BIH心律失常數(shù)據(jù)庫進(jìn)行的實(shí)驗(yàn)結(jié)果表明,該方法顯著縮短分類時間,并獲得超過99.2%的分類準(zhǔn)確率,靈敏度等評價參數(shù)均得到不同程度的提高,滿足心電信號自動分類實(shí)時高效的要求。
-
關(guān)鍵詞:
- 心電信號 /
- 心律失常 /
- 深度學(xué)習(xí) /
- 卷積神經(jīng)網(wǎng)絡(luò) /
- 長短時記憶網(wǎng)絡(luò)
Abstract:Chronic cardiovascular diseases such as arrhythmia seriously affect human health. The automatic classification of ElectroCardioGram(ECG) signals can effectively improve the diagnostic efficiency of such diseases and reduce labor costs. To tackle this problem, an improved Long-Short Term Memory (LSTM) method is proposed to achieve automatic classification of one dimensional ECG signals. Firstly, deep Convolutional Neural Network (CNN) is designed to deeply encode the ECG signal, and ECG signal morphological features are extracted. Secondly, the LSTM classification network is used to realize automatic classification of arrhythmia of ECG signal features. Experimental studies based on the MIT-BIH arrhythmia database show that the training duration is significantly shortened and more than 99.2% classification accuracy is obtained. Sensitivity and other evaluation parameters are improved to meet the real-time and efficient requirements for automatic classification of ECG signals.
-
表 1 CNN模型的細(xì)節(jié)和參數(shù)
層數(shù) 層名稱 卷積核大小 卷積核個數(shù) 激活函數(shù) 步長 參數(shù) 輸出大小 0 輸入 – – – – 300×1 1 1維卷積 5×1 16 ReLU 1 96 300×16 2 批歸一化 – – – – 128 300×16 3 1維卷積 5×1 16 ReLU 1 1424 300×16 4 批歸一化 – – – – 1456 300×16 5 最大池化 2 16 – 2 32 150×16 6 1維卷積 3×1 32 ReLU 1 3024 150×32 7 批歸一化 – – – – 3088 150×32 8 1維卷積 3×1 32 ReLU 1 6192 150×32 9 批歸一化 – – – – 6256 150×32 10 最大池化 2 32 – 2 64 75×32 11 1維卷積 5×1 64 ReLU 1 16560 75×64 12 批歸一化 – – – – 16688 75×64 13 1維卷積 5×1 1 ReLU 1 28800 75×1 14 批歸一化 – – – – 28928 75×1 15 最大池化 2 1 – 2 2 38×1 下載: 導(dǎo)出CSV
表 2 LSTM模型的細(xì)節(jié)和參數(shù)
層名稱 隱含單元 激活函數(shù) 參數(shù) 長短時記憶層 32 – 12 全連接 256 ReLU 9996 全連接 5 Softmax 11024 下載: 導(dǎo)出CSV
表 3 AAMI標(biāo)準(zhǔn)在心電信號分類中描述
AAMI類別 類別數(shù)量 MIT-BIH心跳節(jié)拍類別 Normal(N) 89972 正常(NOR) 左束支傳導(dǎo)阻塞(LBBB) 右束支傳導(dǎo)阻塞(RBBB) 房性逸搏(AE) 結(jié)性逸搏(NE) Supraventricular(S) 2758 房性早搏(AP) 異常房性早搏(aAP) 交界性早搏(NP) 室上性早搏(SP) Ventricular(V) 7140 室性早搏(PVC) 室性逸搏(VE) Fusion(F) 800 心室融合心跳(fVN) Unknown(Q) 30 起搏心跳(P) 起搏融合心跳(fPN) 未分類心跳(U) 下載: 導(dǎo)出CSV
表 4 LSTM網(wǎng)絡(luò)和C-LSTM網(wǎng)絡(luò)測試集的相關(guān)評價參數(shù)(%)
網(wǎng)絡(luò) 評價參數(shù) 模型類別 N S V F Q LSTM Acc 99.54 99.62 99.44 99.71 99.97 Sen 99.87 91.06 95.66 80.19 0 Spe 96.91 99.86 99.76 99.58 99.99 PPV 99.61 95.09 97.00 78.70 0.00 C-LSTM Acc 99.52 99.61 99.51 99.84 99.97 Sen 99.78 92.11 96.63 88.52 0 Spe 98.36 99.83 99.73 99.93 99.99 PPV 99.68 94.08 96.45 91.53 0.00 下載: 導(dǎo)出CSV
表 5 自動檢測心律失常分類結(jié)果性能比較
研究 類型 分類器 信號長度 性能(%) Acc Sen Spe PPV 文獻(xiàn)[19] 4 FFNN 250 samples (0.69 s) 96.94 97.78 96.31 – 文獻(xiàn)[17] 17 KNN 360 samples (1.00 s) 97.00 97.10 96.90 – 文獻(xiàn)[18] 5 SVM+RBF 200 samples (0.56 s) 98.91 98.91 97.85 – 文獻(xiàn)[4] 14 NPE+SVM 300 samples (0.83 s) 98.51 98.51 – 98.51 文獻(xiàn)[11] 5 CNN 360 samples (1.00 s) 94.03 96.71 91.54 97.86 文獻(xiàn)[20] 4 SVM 8×1071 98.39 96.86 98.92 96.85 文獻(xiàn)[12] 5 CNN 73×73 98.42 72.06 97.83 65.91 文獻(xiàn)[15] 5 FCMDBN 200 samples (0.56 s) 96.54 94.55 93.31 93.91 文獻(xiàn)[14] 2 CNN+RNN 211×24 95.76 87.85 87.85 94.99 本文方法 5 LSTM 300 sample (0.83 s) 99.14 91.70 99.22 92.60 C-LSTM 300 →38 samples(0.83 s)→(0.12 s) 99.23 94.26 99.57 95.44 下載: 導(dǎo)出CSV
-
World Health Organization. Cardiovascular diseases[EB/OL]. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1, 2017. YE Can, KUMAR B V K V, and COIMBRA M T. Heartbeat classification using morphological and dynamic features of ECG signals[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(10): 2930–2941. doi: 10.1109/tbme.2012.2213253 YILDIRIM ?. ECG beat detection and classification system using wavelet transform and online sequential ELM[J]. Journal of Mechanics in Medicine and Biology, 2019, 19(1): 1940008. doi: 10.1142/S0219519419400086 高興姣, 李智, 陳珊珊, 等. 基于近鄰保持嵌入算法的心律失常心拍分類[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2017, 34(1): 1–6. doi: 10.7507/1001-5515.201605045GAO Xingjiao, LI Zhi, CHEN Shanshan, et al. Arrhythmia heartbeats classification based on neighborhood preserving embedding algorithm[J]. Journal of Biomedical Engineering, 2017, 34(1): 1–6. doi: 10.7507/1001-5515.201605045 AHMED R and ARAFAT S. Cardiac arrhythmia classification using hierarchical classification model[C]. The 6th International Conference on Computer Science and Information Technology (CSIT), Amman, Jordan, 2014: 203–207. doi: 10.1109/CSIT.2014.6806001. BALOUCHESTANI M, SUGAVANESWARAN L, and KRISHNAN S. Advanced K-means clustering algorithm for large ECG data sets based on K-SVD approach[C]. The 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), Manchester, UK, 2014: 177–182. doi: 10.1109/CSNDSP.2014.6923820. LI Duan, ZHANG Hongxin, and ZHANG Mingming. Wavelet de-noising and genetic algorithm-based least squares twin SVM for classification of arrhythmias[J]. Circuits, Systems, and Signal Processing, 2017, 36(7): 2828–2846. doi: 10.1007/s00034-016-0439-8 YIN Xi and LIU Xiaoming. Multi-task convolutional neural network for pose-invariant face recognition[J]. IEEE Transactions on Image Processing, 2018, 27(2): 964–975. doi: 10.1109/TIP.2017.2765830 王斐, 吳仕超, 劉少林, 等. 基于腦電信號深度遷移學(xué)習(xí)的駕駛疲勞檢測[J]. 電子與信息學(xué)報(bào), 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900WANG Fei, WU Shichao, LIU Shaolin, et al. Driver fatigue detection through deep transfer learning in an electroencephalogram-based system[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900 MENG Huanhuan and ZHANG Yue. Classification of electrocardiogram signals with deep belief networks[C]. The 17th International Conference on Computational Science and Engineering, Chengdu, China, 2014: 7–12. doi: 10.1109/CSE.2014.36. ACHARYA U R, OH S L, HAGIWARA Y, et al. A deep convolutional neural network model to classify heartbeats[J]. Computers in Biology and Medicine, 2017, 89: 389–396. doi: 10.1016/j.compbiomed.2017.08.022 ZHAI Xiaolong and TIN C. Automated ECG classification using dual heartbeat coupling based on convolutional neural network[J]. IEEE Access, 2018, 6: 27465–27472. doi: 10.1109/ACCESS.2018.2833841 CHENG Maowei, SORI W J, JIANG Feng, et al. Recurrent neural network based classification of ecg signal features for obstruction of sleep apnea detection[C]. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 2017, 199–202. doi: 10.1109/CSE-EUC.2017.220. TAN J H, HAGIWARA Y, PANG W, et al. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals[J]. Computers in Biology and Medicine, 2018, 94: 19–26. doi: 10.1016/j.compbiomed.2017.12.023 吳志勇, 丁香乾, 許曉偉, 等. 基于深度學(xué)習(xí)和模糊C均值的心電信號分類方法[J]. 自動化學(xué)報(bào), 2018, 44(10): 1913–1920. doi: 10.16383/j.aas.2018.c170417WU Zhiyong, DING Xiangqian, XU Xiaowei, et al. A method for ECG classification using deep learning and fuzzy C-means[J]. Acta Automatica Sinica, 2018, 44(10): 1913–1920. doi: 10.16383/j.aas.2018.c170417 HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019, 25(1): 65–69. doi: 10.1038/s41591-018-0268-3 PARK J, LEE K, and KANG K. Arrhythmia detection from heartbeat using k-nearest neighbor classifier[C]. 2013 IEEE International Conference on Bioinformatics and Biomedicine, Shanghai, China, 2013: 15–22. doi: 10.1109/BIBM.2013.6732594. ELHAJ F A, SALIM N, HARRIS A R, et al. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals[J]. Computer Methods and Programs in Biomedicine, 2016, 127: 52–63. doi: 10.1016/j.cmpb.2015.12.024 GüLER I and üBEYLI E D. ECG beat classifier designed by combined neural network model[J]. Pattern Recognition, 2005, 38(2): 199–208. doi: 10.1016/j.patcog.2004.06.009 SAHOO S, KANUNGO B, BEHERA S, et al. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities[J]. Measurement, 2017, 108: 55–66. doi: 10.1016/j.measurement.2017.05.022 -