一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于卷積長短時記憶網(wǎng)絡(luò)的心律失常分類方法

柯麗 王丹妮 杜強(qiáng) 姜楚迪

柯麗, 王丹妮, 杜強(qiáng), 姜楚迪. 基于卷積長短時記憶網(wǎng)絡(luò)的心律失常分類方法[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 1990-1998. doi: 10.11999/JEIT190712
引用本文: 柯麗, 王丹妮, 杜強(qiáng), 姜楚迪. 基于卷積長短時記憶網(wǎng)絡(luò)的心律失常分類方法[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 1990-1998. doi: 10.11999/JEIT190712
Li KE, Danni WANG, Qiang DU, Chudi JIANG. Arrhythmia Classification Based on Convolutional Long Short Term Memory Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1990-1998. doi: 10.11999/JEIT190712
Citation: Li KE, Danni WANG, Qiang DU, Chudi JIANG. Arrhythmia Classification Based on Convolutional Long Short Term Memory Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1990-1998. doi: 10.11999/JEIT190712

基于卷積長短時記憶網(wǎng)絡(luò)的心律失常分類方法

doi: 10.11999/JEIT190712 cstr: 32379.14.JEIT190712
基金項(xiàng)目: 國家自然科學(xué)基金(51377109),遼寧省自然科學(xué)基金(2019-ZD-0204)
詳細(xì)信息
    作者簡介:

    柯麗:女,1977年生,博士,教授,博士生導(dǎo)師,研究方向?yàn)樯镫姽づc阻抗成像技術(shù)

    王丹妮:女,1995年生,碩士生,研究方向?yàn)獒t(yī)學(xué)信號處理與分析

    杜強(qiáng):男,1975年生,博士,講師,研究方向?yàn)樯镝t(yī)學(xué)信號檢測與處理

    姜楚迪:女,1996年生,碩士生,研究方向?yàn)獒t(yī)學(xué)電磁工程及醫(yī)療儀器

    通訊作者:

    柯麗 keli@sut.edu.cn

  • 中圖分類號: TP391; R540.41

Arrhythmia Classification Based on Convolutional Long Short Term Memory Network

Funds: The National Natural Science Foundation of China (51377109), The Natural Science Foundation of Liaoning Province (2019-ZD-0204)
  • 摘要:

    心律失常等慢性心血管疾病嚴(yán)重影響人類健康,采用心電信號(ECG)實(shí)現(xiàn)心律失常自動分類可有效提高該類疾病的診斷效率,降低人工成本。為此,該文基于1維心電信號,提出一種改進(jìn)的長短時記憶網(wǎng)絡(luò)(LSTM)方法實(shí)現(xiàn)心律失常自動分類。該方法首先設(shè)計(jì)深層卷積神經(jīng)網(wǎng)絡(luò)(CNN)對心電信號進(jìn)行深度編碼,提取心電信號形態(tài)特征。其次,搭建長短時記憶分類網(wǎng)絡(luò)實(shí)現(xiàn)基于心電信號特征的心律失常自動分類?;贛IT-BIH心律失常數(shù)據(jù)庫進(jìn)行的實(shí)驗(yàn)結(jié)果表明,該方法顯著縮短分類時間,并獲得超過99.2%的分類準(zhǔn)確率,靈敏度等評價參數(shù)均得到不同程度的提高,滿足心電信號自動分類實(shí)時高效的要求。

  • 圖  1  心電信號預(yù)處理

    圖  2  C-LSTM網(wǎng)絡(luò)結(jié)構(gòu)

    圖  3  各類別心電信號分段結(jié)果

    圖  4  CNN提取到的信號特征

    圖  5  網(wǎng)絡(luò)訓(xùn)練和驗(yàn)證性能圖

    圖  6  網(wǎng)絡(luò)測試集混淆矩陣

    表  1  CNN模型的細(xì)節(jié)和參數(shù)

    層數(shù)層名稱卷積核大小卷積核個數(shù)激活函數(shù)步長參數(shù)輸出大小
    0輸入300×1
    11維卷積5×116ReLU196300×16
    2批歸一化128300×16
    31維卷積5×116ReLU11424300×16
    4批歸一化1456300×16
    5最大池化216232150×16
    61維卷積3×132ReLU13024150×32
    7批歸一化3088150×32
    81維卷積3×132ReLU16192150×32
    9批歸一化6256150×32
    10最大池化23226475×32
    111維卷積5×164ReLU11656075×64
    12批歸一化1668875×64
    131維卷積5×11ReLU12880075×1
    14批歸一化2892875×1
    15最大池化212238×1
    下載: 導(dǎo)出CSV

    表  2  LSTM模型的細(xì)節(jié)和參數(shù)

    層名稱隱含單元激活函數(shù)參數(shù)
    長短時記憶層3212
    全連接256ReLU9996
    全連接5Softmax11024
    下載: 導(dǎo)出CSV

    表  3  AAMI標(biāo)準(zhǔn)在心電信號分類中描述

    AAMI類別類別數(shù)量MIT-BIH心跳節(jié)拍類別
    Normal(N)89972正常(NOR)
    左束支傳導(dǎo)阻塞(LBBB)
    右束支傳導(dǎo)阻塞(RBBB)
    房性逸搏(AE)
    結(jié)性逸搏(NE)
    Supraventricular(S)2758房性早搏(AP)
    異常房性早搏(aAP)
    交界性早搏(NP)
    室上性早搏(SP)
    Ventricular(V)7140室性早搏(PVC)
    室性逸搏(VE)
    Fusion(F)800心室融合心跳(fVN)
    Unknown(Q)30起搏心跳(P)
    起搏融合心跳(fPN)
    未分類心跳(U)
    下載: 導(dǎo)出CSV

    表  4  LSTM網(wǎng)絡(luò)和C-LSTM網(wǎng)絡(luò)測試集的相關(guān)評價參數(shù)(%)

    網(wǎng)絡(luò)評價參數(shù)模型類別
    NSVFQ
    LSTMAcc99.5499.6299.4499.7199.97
    Sen99.8791.0695.6680.190
    Spe96.9199.8699.7699.5899.99
    PPV99.6195.0997.0078.700.00
    C-LSTMAcc99.5299.6199.5199.8499.97
    Sen99.7892.1196.6388.520
    Spe98.3699.8399.7399.9399.99
    PPV99.6894.0896.4591.530.00
    下載: 導(dǎo)出CSV

    表  5  自動檢測心律失常分類結(jié)果性能比較

    研究類型分類器信號長度性能(%)
    AccSenSpePPV
    文獻(xiàn)[19]4FFNN250 samples (0.69 s)96.9497.7896.31
    文獻(xiàn)[17]17KNN360 samples (1.00 s)97.0097.1096.90
    文獻(xiàn)[18]5SVM+RBF200 samples (0.56 s)98.9198.9197.85
    文獻(xiàn)[4]14NPE+SVM300 samples (0.83 s)98.5198.5198.51
    文獻(xiàn)[11]5CNN360 samples (1.00 s)94.0396.7191.5497.86
    文獻(xiàn)[20]4SVM8×107198.3996.8698.9296.85
    文獻(xiàn)[12]5CNN73×7398.4272.0697.8365.91
    文獻(xiàn)[15]5FCMDBN200 samples (0.56 s)96.5494.5593.3193.91
    文獻(xiàn)[14]2CNN+RNN211×2495.7687.8587.8594.99
    本文方法5LSTM300 sample (0.83 s)99.1491.7099.2292.60
    C-LSTM300 →38 samples(0.83 s)→(0.12 s)99.2394.2699.5795.44
    下載: 導(dǎo)出CSV
  • World Health Organization. Cardiovascular diseases[EB/OL]. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1, 2017.
    YE Can, KUMAR B V K V, and COIMBRA M T. Heartbeat classification using morphological and dynamic features of ECG signals[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(10): 2930–2941. doi: 10.1109/tbme.2012.2213253
    YILDIRIM ?. ECG beat detection and classification system using wavelet transform and online sequential ELM[J]. Journal of Mechanics in Medicine and Biology, 2019, 19(1): 1940008. doi: 10.1142/S0219519419400086
    高興姣, 李智, 陳珊珊, 等. 基于近鄰保持嵌入算法的心律失常心拍分類[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2017, 34(1): 1–6. doi: 10.7507/1001-5515.201605045

    GAO Xingjiao, LI Zhi, CHEN Shanshan, et al. Arrhythmia heartbeats classification based on neighborhood preserving embedding algorithm[J]. Journal of Biomedical Engineering, 2017, 34(1): 1–6. doi: 10.7507/1001-5515.201605045
    AHMED R and ARAFAT S. Cardiac arrhythmia classification using hierarchical classification model[C]. The 6th International Conference on Computer Science and Information Technology (CSIT), Amman, Jordan, 2014: 203–207. doi: 10.1109/CSIT.2014.6806001.
    BALOUCHESTANI M, SUGAVANESWARAN L, and KRISHNAN S. Advanced K-means clustering algorithm for large ECG data sets based on K-SVD approach[C]. The 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), Manchester, UK, 2014: 177–182. doi: 10.1109/CSNDSP.2014.6923820.
    LI Duan, ZHANG Hongxin, and ZHANG Mingming. Wavelet de-noising and genetic algorithm-based least squares twin SVM for classification of arrhythmias[J]. Circuits, Systems, and Signal Processing, 2017, 36(7): 2828–2846. doi: 10.1007/s00034-016-0439-8
    YIN Xi and LIU Xiaoming. Multi-task convolutional neural network for pose-invariant face recognition[J]. IEEE Transactions on Image Processing, 2018, 27(2): 964–975. doi: 10.1109/TIP.2017.2765830
    王斐, 吳仕超, 劉少林, 等. 基于腦電信號深度遷移學(xué)習(xí)的駕駛疲勞檢測[J]. 電子與信息學(xué)報(bào), 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900

    WANG Fei, WU Shichao, LIU Shaolin, et al. Driver fatigue detection through deep transfer learning in an electroencephalogram-based system[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900
    MENG Huanhuan and ZHANG Yue. Classification of electrocardiogram signals with deep belief networks[C]. The 17th International Conference on Computational Science and Engineering, Chengdu, China, 2014: 7–12. doi: 10.1109/CSE.2014.36.
    ACHARYA U R, OH S L, HAGIWARA Y, et al. A deep convolutional neural network model to classify heartbeats[J]. Computers in Biology and Medicine, 2017, 89: 389–396. doi: 10.1016/j.compbiomed.2017.08.022
    ZHAI Xiaolong and TIN C. Automated ECG classification using dual heartbeat coupling based on convolutional neural network[J]. IEEE Access, 2018, 6: 27465–27472. doi: 10.1109/ACCESS.2018.2833841
    CHENG Maowei, SORI W J, JIANG Feng, et al. Recurrent neural network based classification of ecg signal features for obstruction of sleep apnea detection[C]. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 2017, 199–202. doi: 10.1109/CSE-EUC.2017.220.
    TAN J H, HAGIWARA Y, PANG W, et al. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals[J]. Computers in Biology and Medicine, 2018, 94: 19–26. doi: 10.1016/j.compbiomed.2017.12.023
    吳志勇, 丁香乾, 許曉偉, 等. 基于深度學(xué)習(xí)和模糊C均值的心電信號分類方法[J]. 自動化學(xué)報(bào), 2018, 44(10): 1913–1920. doi: 10.16383/j.aas.2018.c170417

    WU Zhiyong, DING Xiangqian, XU Xiaowei, et al. A method for ECG classification using deep learning and fuzzy C-means[J]. Acta Automatica Sinica, 2018, 44(10): 1913–1920. doi: 10.16383/j.aas.2018.c170417
    HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019, 25(1): 65–69. doi: 10.1038/s41591-018-0268-3
    PARK J, LEE K, and KANG K. Arrhythmia detection from heartbeat using k-nearest neighbor classifier[C]. 2013 IEEE International Conference on Bioinformatics and Biomedicine, Shanghai, China, 2013: 15–22. doi: 10.1109/BIBM.2013.6732594.
    ELHAJ F A, SALIM N, HARRIS A R, et al. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals[J]. Computer Methods and Programs in Biomedicine, 2016, 127: 52–63. doi: 10.1016/j.cmpb.2015.12.024
    GüLER I and üBEYLI E D. ECG beat classifier designed by combined neural network model[J]. Pattern Recognition, 2005, 38(2): 199–208. doi: 10.1016/j.patcog.2004.06.009
    SAHOO S, KANUNGO B, BEHERA S, et al. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities[J]. Measurement, 2017, 108: 55–66. doi: 10.1016/j.measurement.2017.05.022
  • 加載中
圖(6) / 表(5)
計(jì)量
  • 文章訪問數(shù):  5343
  • HTML全文瀏覽量:  2955
  • PDF下載量:  181
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-09-16
  • 修回日期:  2020-02-20
  • 網(wǎng)絡(luò)出版日期:  2020-03-23
  • 刊出日期:  2020-08-18

目錄

    /

    返回文章
    返回