面向探地雷達(dá) B-scan圖像的目標(biāo)檢測(cè)算法綜述
doi: 10.11999/JEIT190680 cstr: 32379.14.JEIT190680
-
中南大學(xué)計(jì)算機(jī)學(xué)院 長(zhǎng)沙 410000
A Review of Target Detection Algorithm for GPR B-scan Processing
-
Department of Computer Science and Engineering, Central South University, Changsha 410000, China
-
摘要:
利用無(wú)損探測(cè)技術(shù)來(lái)獲取地下目標(biāo)的信息是當(dāng)前研究的熱點(diǎn),探地雷達(dá)(GPR)作為一種重要的無(wú)損工具,已被廣泛用于檢測(cè),定位和特征化地下目標(biāo)。然而,從GPR成像中探測(cè)掩埋物體并評(píng)估其位置既費(fèi)時(shí)又費(fèi)力。因此,實(shí)現(xiàn)地下目標(biāo)的自動(dòng)化探測(cè)對(duì)實(shí)際應(yīng)用是必要的。為此,該文在綜合分析地下目標(biāo)回波特征的基礎(chǔ)上,討論了使用GPR評(píng)估目標(biāo)位置的可行性,并回顧了國(guó)內(nèi)外學(xué)者在GPR成像中對(duì)雙曲線特征自動(dòng)化檢測(cè)的研究進(jìn)展。該文還在國(guó)內(nèi)外典型實(shí)例剖析的基礎(chǔ)上,總結(jié)并比較了目標(biāo)檢測(cè)的處理方法。最后指出,未來(lái)的研究應(yīng)集中于開(kāi)發(fā)新的深度學(xué)習(xí)檢測(cè)框架,用以自動(dòng)檢測(cè)和估計(jì)真實(shí)場(chǎng)景中的地下特征。
-
關(guān)鍵詞:
- 探地雷達(dá) /
- 地下目標(biāo)檢測(cè) /
- 機(jī)器學(xué)習(xí) /
- 深度學(xué)習(xí) /
- 雙曲線反射
Abstract:Ground Penetrating Radar (GPR), as a non-destructive technology, has been widely used to detect, locate, and characterize subsurface objects. Example applications include underground utility mapping and bridge deck deterioration assessment. However, manually interpreting the GPR scans to detect buried objects and estimate their positions is time-consuming and labor-intensive. Hence, the automatic detection of targets is necessary for practical application. To this end, this paper discusses the feasibility of using GPR to estimate target positions, and reviews the progress made by domestic and international scholars on automatic hyperbolic signature detection in GPR scans. Thereafter, this paper summarizes and compares the processing methods for target detection. It is concluded that future research should focus on developing deep-learning based method to automatically detect and estimate subsurface features for on-site applications.
-
表 1 GPR目標(biāo)檢測(cè)的經(jīng)典算法總結(jié)
序號(hào) 參考文獻(xiàn) 時(shí)間 GPR目標(biāo) 客觀評(píng)價(jià) 1 Borgioli et al. [17] 2008 地埋管道 在Hough變換中引入加權(quán)因子,解決了管道靠近時(shí)雙曲線重疊的問(wèn)題;但是需要預(yù)備模型,計(jì)算成本相對(duì)較高。 2 Maas et al. [23] 2013 雙曲線反射 使用Viola-Jones算法標(biāo)記目標(biāo)候選區(qū)域,它避免了模板匹配并縮小了后續(xù)搜索區(qū)域;然而,應(yīng)用特征需手動(dòng)識(shí)別,分類(lèi)結(jié)果取決于特征的質(zhì)量,難度隨著數(shù)據(jù)量的增加。 3 Besaw et al. [2] 2016 地埋爆炸物 應(yīng)用CNN從GPR B-scan中提取有意義的特征并對(duì)目標(biāo)進(jìn)行分類(lèi)。交叉驗(yàn)證,網(wǎng)絡(luò)權(quán)重正則化和“dropout”用于防止過(guò)度訓(xùn)練。 4 Besaw[3] 2016 地埋爆炸物 在CNN基礎(chǔ)上增加了額外的Data Augmentation技術(shù),用于增加可用訓(xùn)練數(shù)據(jù)的數(shù)量和可變性。 5 文獻(xiàn)[4,5] 2017 地埋爆炸物 研究了預(yù)訓(xùn)練CNN的初始化步驟,以解決GPR數(shù)據(jù)標(biāo)記樣本不足的問(wèn)題;但是輸入網(wǎng)絡(luò)中真實(shí)圖像的大小和數(shù)量通常是有限的,僅實(shí)現(xiàn)分類(lèi)步驟。 6 Pham et al. [27] 2018 雙曲線反射 首次采用Faster RCNN來(lái)檢測(cè)GPR B-scan中的反射雙曲線。該技術(shù)在真實(shí)測(cè)試集上的性能要超過(guò)使用HOG或Haar-like特征的檢測(cè)器,但缺少定量的評(píng)估。 7 Lei et al. [28] 2019 地埋鋼筋 在文獻(xiàn)[27]基礎(chǔ)上,采用了DA手段增加真實(shí)GPR數(shù)據(jù)集和仿真數(shù)據(jù)集;提出DCSE算法以識(shí)別雙曲線特征,完善了文獻(xiàn)[30]中提出的OSCA算法;提出CTFP算法自動(dòng)提取擬合點(diǎn)。所提出方案的有效性在仿真和真實(shí)數(shù)據(jù)集上得到了驗(yàn)證。 8 Dou et al. [29] 2016 雙曲線反射 提出了C3算法分割交叉雙曲線,并將其送入神經(jīng)網(wǎng)絡(luò)進(jìn)行分類(lèi)。C3算法水平掃描B-scan圖像中的每個(gè)像素以進(jìn)行聚類(lèi)。然而,雙曲線是垂直向下打開(kāi)的,C3算法沒(méi)有考慮這個(gè)重要特征。 9 Zhou et al. [30] 2018 金屬管道
水泥管道提出OSCA算法解決了文獻(xiàn)[29]中的難題,可以識(shí)別具有向下開(kāi)口特征的聚類(lèi)。然而,在整個(gè)圖像上進(jìn)行OSCA算法是不合適的,因?yàn)殡y以處理包含太多非平穩(wěn)噪聲的大型現(xiàn)場(chǎng)數(shù)據(jù)集,導(dǎo)致后續(xù)處理復(fù)雜化。 下載: 導(dǎo)出CSV
-
JOL H M. 雷文太, 童孝忠, 周旸, 譯. 探地雷達(dá)理論與應(yīng)用[M]. 北京: 電子工業(yè)出版社, 2011.JOL H M. LEI Wentai, TONG Xiaozhong, ZHOU Yang, translation. Ground Penetrating Radar: Theory and Applications[M]. Beijing: Publishing House of Electronics Industry, 2011. BESAW L E and STIMAC P J. Deep convolutional neural networks for classifying GPR B-Scans[J]. SPIE, 2015, 9454: 945413. BESAW L E. Detecting buried explosive hazards with handheld GPR and deep learning[J]. SPIE, 2016, 9823: 98230N. doi: 10.1117/12.2223797 BRALICH J, REICHMAN D, COLLINS L M, et al. Improving convolutional neural networks for buried target detection in ground penetrating radar using transfer learning via pretraining[J]. SPIE, 2017: 10182. REICHMAN D, COLLINS L M, and MALOF J M. Some good practices for applying convolutional neural networks to buried threat detection in Ground Penetrating Radar[C]. The 9th International Workshop on Advanced Ground Penetrating Radar, Edinburgh, UK, 2017: 1–5. LAMERI S, LOMBARDI F, BESTAGINI P, et al. Landmine detection from GPR data using convolutional neural networks[C]. The 25th European Signal Processing Conference, Kos, Greece, 2017: 508–512. BENEDETTO A, BENEDETTO F, DE BLASⅡS M R, et al. Reliability of radar inspection for detection of pavement damage[J]. Road Materials and Pavement Design, 2004, 5(1): 93–110. doi: 10.1080/14680629.2004.9689964 LEI Wentai, SHI Ronghua, DONG Jian, et al. A multi-scale weighted back projection imaging technique for ground penetrating radar applications[J]. Remote Sensing, 2014, 6(6): 5151–5163. doi: 10.3390/rs6065151 LEI Wentai, ZENG Sheng, ZHAO Jian, et al. An improved back projection imaging algorithm for subsurface target detection[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2013, 21(6): 1820–1826. BENEDETTO F and TOSTI F. GPR spectral analysis for clay content evaluation by the frequency shift method[J]. Journal of Applied Geophysics, 2013, 97: 89–96. doi: 10.1016/j.jappgeo.2013.03.012 KAUR P, DANA K J, ROMERO F A, et al. Automated GPR rebar analysis for robotic bridge deck evaluation[J]. IEEE Transactions on Cybernetics, 2016, 46(10): 2265–2276. doi: 10.1109/TCYB.2015.2474747 DINH K, GUCUNSKI N, and DUONG T H. An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks[J]. Automation in Construction, 2018, 89: 292–298. doi: 10.1016/j.autcon.2018.02.017 YUAN Chenxi, LI Shuai, CAI Hubo, et al. GPR signature detection and decomposition for mapping buried utilities with complex spatial configuration[J]. Journal of Computing in Civil Engineering, 2018, 32(4): 04018026. doi: 10.1061/(ASCE)CP.1943-5487.0000764 LI Shuai, CAI Hubo, and KAMAT V R. Uncertainty-aware geospatial system for mapping and visualizing underground utilities[J]. Automation in Construction, 2015, 53: 105–119. doi: 10.1016/j.autcon.2015.03.011 LI Shuai, CAI Hubo, ABRAHAM D M, et al. Estimating features of underground utilities: Hybrid GPR/GPS approach[J]. Journal of Computing in Civil Engineering, 2016, 30(1): 04014108. doi: 10.1061/(ASCE)CP.1943-5487.0000443 ILLINGWORTH J and KITTLER J. A survey of the Hough transform[J]. Computer Vision, Graphics, and Image Processing, 1988, 43(2): 280. BORGIOLI G, CAPINERI L, FALORNI P, et al. The detection of buried pipes from time-of-flight radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8): 2254–2266. doi: 10.1109/tgrs.2008.917211 WINDSOR C G, CAPINERI L, and FALORNI P. A data pair-labeled generalized Hough transform for radar location of buried objects[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 124–127. doi: 10.1109/LGRS.2013.2248119 BOOKSTEIN F L. Fitting conic sections to scattered data[J]. Computer Graphics and Image Processing, 1979, 9(1): 56–71. doi: 10.1016/0146-664x(79)90082-0 AKIMA H. A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points[J]. ACM Transactions on Mathematical Software, 1978, 4(2): 148–159. doi: 10.1145/355780.355786 PORRILL J. Fitting ellipses and predicting confidence envelopes using a bias corrected Kalman filter[J]. Image and Vision Computing, 1990, 8(1): 37–41. doi: 10.1016/0262-8856(90)90054-9 YOUN H S and CHEN C C. Automatic GPR target detection and clutter reduction using neural network[J]. SPIE, 2002, 4758: 579–582. doi: 10.1117/12.462229. MAAS C and SCHMALZL J. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar[J]. Computers & Geosciences, 2013, 58: 116–125. doi: 10.1016/j.cageo.2013.04.012 VIOLA P and JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137–154. doi: 10.1023/b:visi.0000013087.49260.fb KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386 WITTEN T R. Present state of the art in ground-penetrating radars for mine detection[J]. SPIE, 1998, 3392. PHAM M T and LEFèVRE S. Buried object detection from B-scan ground penetrating radar data using Faster-RCNN[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 6804–6807. LEI Wentai, HOU Feifei, XI Jingchun, et al. Automatic hyperbola detection and fitting in GPR B-scan image[J]. Automation in Construction, 2019, 106: 102839. doi: 10.1016/j.autcon.2019.102839 DOU Qingxu, WEI Lijun, MAGEE D R, et al. Real-time hyperbola recognition and fitting in GPR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 51–62. doi: 10.1109/tgrs.2016.2592679 ZHOU Xiren, CHEN Huanhuan, and LI Jinlong. An automatic GPR B-Scan image interpreting model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3398–3412. doi: 10.1109/TGRS.2018.2799586 TANOLI W A, SHARAFAT A, and PARK J, et al. Damage Prevention for underground utilities using machine guidance[J]. Automation in Construction, 2017, 107: 102893. YAL?INER C C, BANO M, KADIOGLU M, et al. New temple discovery at the archaeological site of Nysa (western Turkey) using GPR method[J]. Journal of Archaeological Science, 2009, 36(8): 1680–1689. doi: 10.1016/j.jas.2008.12.016 CAPINERI L, GRANDE P, and TEMPLE J A G. Advanced image-processing technique for real-time interpretation of ground-penetrating radar images[J]. International Journal of Imaging Systems and Technology, 1998, 9(1): 51–59. doi: 10.1002/(SICI)1098-1098(1998)9:1<51::AID-IMA7>3.0.CO;2-Q PASOLLI E, MELGANI F, DONELLI M, et al. Automatic detection and classification of buried objects in GPR images using genetic algorithms and support vector machines[C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: Ⅱ-525–Ⅱ-528. PASOLLI E, MELGANI F, and DONELLI M. Automatic analysis of GPR images: A pattern-recognition approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2206–2217. doi: 10.1109/TGRS.2009.2012701 MOLYNEAUX T C K, MILLARD S G, BUNGEY J H, et al. Radar assessment of structural concrete using neural networks[J]. NDT & E International, 1995, 28(5): 281–288. AL-NUAIMY W, HUANG Y, NAKHKASH M, et al. Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition[J]. Journal of Applied Geophysics, 2000, 43(2/4): 157–165. GAMBA P and LOSSANI S. Neural detection of pipe signatures in ground penetrating radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 790–797. doi: 10.1109/36.842008 AL-NUAIMY W, HUANG Y, NAKHKASH M, et al. Neural network for the automatic detection of buried utilities and landmines[C]. 1998 Progress of Electromagnetic Research Symposium, Nantes, Frances, 1998: 141. SHIHAB S, AL-NUAIMY W, HUANG Y, et al. Automatic region-based shape discrimination of ground penetrating radar signatures[C]. 2003 Symposium on the Application of Geophysics to Environmental and Engineering Problems SAGEEP 2003, San Antonio, USA, 2003. AL-NUAIMY W, LU Huihai, SHIHAB S, et al. Automatic mapping of linear structures in 3-dimensional space from ground-penetrating radar data[C]. 2001 IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Rome, Italy, 2001: 198–201. SHIHAB S, AL-NUAIMY W, and ERIKSEN A. Image processing and neural network techniques for automatic detection and interpretation of ground penetrating radar data[C]. The 6th WSEAS, Crete, 2002. AL-NUAIMY W, HUANG Yi, ERIKSEN A, et al. Automatic detection of hyperbolic signatures in ground-penetrating radar data[J]. SPIE, 2001, 4491: 327. SHAW M R, MOLYNEAUX T C K, MILLARD S G, et al. Assessing bar size of steel reinforcement in concrete using ground penetrating radar and neural networks[J]. Insight - Non-Destructive Testing and Condition Monitoring, 2003, 45(12): 813–816. doi: 10.1784/insi.45.12.813.52980 SHAW M R, MILLARD S G, MOLYNEAUX T C K, et al. Location of steel reinforcement in concrete using ground penetrating radar and neural networks[J]. NDT & E International, 2005, 38(3): 203–212. LAMERI S, LOMBARDI F, BESTAGINI P, et al. Landmine detection from GPR data using convolutional neural networks[C]. The 25th European Signal Processing Conference, Kos, Greece, 2017. BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends? in Machine Learning, 2009, 2(1): 1–127. doi: 10.1561/2200000006 REICHMAN D, COLLINS L M, and MALOF J M. Some good practices for applying convolutional neural networks to buried threat detection in Ground Penetrating Radar[C]. The 9th International Workshop on Advanced Ground Penetrating Radar, Edinburgh, UK, 2017. WARREN C, GIANNOPOULOS A, and GIANNAKIS I. GprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209: 163–170. doi: 10.1016/j.cpc.2016.08.020 KRIZHEVSKY A. Learning multiple layers of features from tiny images[R]. Technical Report TR-2009, 2009: 1–60. KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: Analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881–892. doi: 10.1109/TPAMI.2002.1017616 NG R T and HAN Jiawei. Efficient and effective clustering methods for spatial data mining[C]. The 20th International Conference on Very Large Data Bases, Birmingham, USA, 1994: 144–155. ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]. The 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, 1996: 226–231. ERT?Z L, STEINBACH M, and KUMAR V. Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data[C]. The 2nd SIAM International Conference on Data Mining, 2003. AHN S J, RAUH W, and WARNECKE H J. Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola[J]. Pattern Recognition, 2001, 34(12): 2283–2303. doi: 10.1016/S0031-3203(00)00152-7 FITZGIBBON A, PILU M, and FISHER R B. Direct least square fitting of ellipses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476–480. doi: 10.1109/34.765658 GANDER W, GOLUB G H, and STREBEL R. Least-squares fitting of circles and ellipses[J]. BIT Numerical Mathematics, 1994, 34(4): 558–578. doi: 10.1007/BF01934268 PILU M, FITZGIBBON A W, and FISHER R B. Ellipse-specific direct least-square fitting[C]. The 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 1996: 599–602. CHEN Huanhuan and COHN A G. Probabilistic conic mixture model and its applications to mining spatial ground penetrating radar data[C]. The Workshops in SIAM Conference on Data Mining, 2010: 1–9. CHEN Huanhuan and COHN A G. Probabilistic robust hyperbola mixture model for interpreting ground penetrating radar data[C]. 2010 International Joint Conference on Neural Networks, Barcelona, Spain, 2010: 1–8. -