一種人與人和物到物業(yè)務(wù)共存下的異構(gòu)蜂窩網(wǎng)絡(luò)柔性接入策略
doi: 10.11999/JEIT190676 cstr: 32379.14.JEIT190676
-
陸軍工程大學(xué)野戰(zhàn)工程學(xué)院 南京 210007
A Flexible Network Access Scheme in Heterogeneous Cell Networks with H2H and M2M Coexistence
-
College of Field Engineering, Army Engineering University, Nanjing 210007, China
-
摘要:
針對(duì)人與人(H2H)和物到物(M2M)業(yè)務(wù)共存的異構(gòu)無(wú)線網(wǎng)絡(luò),該文設(shè)計(jì)了一種根據(jù)業(yè)務(wù)特性的代理節(jié)點(diǎn)的網(wǎng)絡(luò)選擇策略,用博弈論對(duì)以保障兩類業(yè)務(wù)服務(wù)質(zhì)量(QoS)需求和網(wǎng)絡(luò)負(fù)載均衡為目標(biāo)的代理節(jié)點(diǎn)網(wǎng)絡(luò)選擇問(wèn)題進(jìn)行建模,并分析了該博弈模型納什均衡(NE)的存在性和可行性;同時(shí),提出了基于學(xué)習(xí)自動(dòng)機(jī)的分布式網(wǎng)絡(luò)-信道選擇算法(DNCSALA),求得該博弈的納什均衡。仿真結(jié)果表明,所提算法能夠獲得與窮舉搜索算法相近的性能,可滿足共存場(chǎng)景中不同類型業(yè)務(wù)的QoS需求并提高網(wǎng)絡(luò)資源利用率。
-
關(guān)鍵詞:
- 異構(gòu)蜂窩網(wǎng) /
- H2H和M2M共存 /
- 網(wǎng)絡(luò)選擇 /
- 博弈論
Abstract:Considering the problem of agents’ network selection for Human-to-Human(H2H) and Machine-to-Machine (M2M) traffic in heterogeneous wireless networks, an agents’ network selection scheme based on the characteristic of traffic is designed. Game theory is adopted to solve the problem of network selection to satisfy difference in traffic’s Quality of Service (QoS) requirements. The existence and feasibility of the Nash Equilibrium (NE) of the proposed game are also analyzed. Then, a Distributed Network-Channe Selection Algorithm based on Learning Automata (DNCSALA) is presented to obtain the NE of the proposed game. In simulations, the proposed algorithm can achieve a near optimal performance compared to the exhaustive search, satisfy the QoS requirements of different types of traffic, and improves the efficiency of network resources.
-
圖 2 DNCSALA中剛性代理節(jié)點(diǎn)4的行動(dòng)概率進(jìn)化曲線圖,(
${\gamma ^{\rm ave}} = 5$ dB,${M_f} = 4$ ,${M_r} = 4$ ,${{}_{\rm req}} = \{ 0.5,0.6,0.7,0.7\} $ )表 1 基于學(xué)習(xí)自動(dòng)機(jī)的分布式網(wǎng)絡(luò)選擇算法(DNCSALA)
(1) 首先,初始化每個(gè)代理節(jié)點(diǎn)第0時(shí)刻的行為概率分布${ {{p} }_i}(0)$為$p_{ik}^j(0) = {1 / {\left(1 + \displaystyle\sum\nolimits_{j \in {\cal{N}}} {{K_j}} \right)}}$, $\forall i \in {\cal M},j \in {\cal N}$。每一個(gè)代理節(jié)點(diǎn)根據(jù)自 己的行為概率分布${ {{p} }_i}(0)$選擇一個(gè)行為②; (2) 在每一個(gè)時(shí)刻$t > 0$,每一個(gè)代理節(jié)點(diǎn)都根據(jù)當(dāng)前時(shí)刻的概率分布${ {{p} }_i}(0)$選擇一個(gè)行為(${s_i}(t)$); (3) 基站根據(jù)所有代理節(jié)點(diǎn)的行為,計(jì)算出收益,并將其廣播給所有代理節(jié)點(diǎn); (4) 在獲得反應(yīng)函數(shù)之后,每一個(gè)代理節(jié)點(diǎn)根據(jù)式(16),更新自己的行為概率分布, 其中$0 < {\zeta ^s} < 1$表示步長(zhǎng)參數(shù);
$\left. \begin{aligned} & {p_{ik}^j(t + 1) = p_{ik}^j(t) - {\zeta ^s}{\gamma _i}(t)p_{ik}^j(t),\quad \quad \quad\quad {s_i}(t) \ne {\rm{CH} }_{ik}^j} \\ & {p_{ik}^j(t + 1) = p_{ik}^j(t) + {\zeta ^s}{\gamma _i}(t)(1 - p_{ik}^j(t)),\quad \;\,{s_i}(t) = {\rm{CH} }_{ik}^j} \end{aligned} \right\}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\qquad\qquad (16)$(5) 如果對(duì)于任意$i \in {\cal M}$, 其行為概率分布存在一個(gè)元素接近1,確切地說(shuō)等于0.99,那么算法停止。否則,跳轉(zhuǎn)到步驟(2)。 下載: 導(dǎo)出CSV
-
AGIWAL M, ROY A, and SAXENA N. Next generation 5G wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1617–1655. doi: 10.1109/COMST.2016.2532458 AKPAKWU G A, SILVA B J, HANCKE G P, et al. A survey on 5G networks for the Internet of Things: Communication technologies and challenges[J]. IEEE Access, 2018(6): 3619–3647. doi: 10.1109/ACCESS.2017.2779844 WANG Hai and ABRAHAM O F. A survey of enabling technologies of low power and long range Machine-to-Machine communications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2621–2639. doi: 10.1109/COMST.2017.2721379 XIA Nian, CHEN H H, and YANG C S. Radio resource management in Machine-to-Machine communications-a survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 791–828. doi: 10.1109/COMST.2017.2765344 李寧, 林家儒. CDMA/OFDMA異構(gòu)網(wǎng)絡(luò)中最小化中斷概率的網(wǎng)絡(luò)選擇方案[J]. 電子與信息學(xué)報(bào), 2011, 33(12): 2965–2970. doi: 10.3724/SP.J.1146.2011.00387LI Ning and LIN Jiaru. Network selection strategy for minimizing outage probability in CDMA/OFDMA heterogeneous networks[J]. Journal of Electronics &Information Technology, 2011, 33(12): 2965–2970. doi: 10.3724/SP.J.1146.2011.00387 KUMAR A, MALLIK R K, and SCHOBER R. A probabilistic approach to modeling users’ network selection in the presence of heterogeneous wireless networks[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7): 3331–3341. doi: 10.1109/TVT.2013.2297437 DU Zhiyong, WU Qihui, and YANG Panlong. Dynamic user demand driven online network selection[J]. IEEE Communications Letters, 2014, 18(3): 419–422. doi: 10.1109/LCOMM.2014.011214.132617 杜白, 李紅艷, 龍彥. 最小最大剩余服務(wù)時(shí)間的異構(gòu)網(wǎng)絡(luò)選擇算法[J]. 通信學(xué)報(bào), 2015, 36(8): 104–109. doi: 10.11959/j.issn.1000-436x.2015231DU Bai, LI Hongyan, and LONG Yan. Network selection algorithm in heterogeneous wireless networks to minimize the maximum residual service time[J]. Journal on Communications, 2015, 36(8): 104–109. doi: 10.11959/j.issn.1000-436x.2015231 TSENG L C, CHIEN F T, ZHANG Daqiang, et al. Network selection in cognitive heterogeneous networks using stochastic learning[J]. IEEE Communications Letters, 2013, 17(12): 2304–2307. doi: 10.1109/LCOMM.2013.102113.131876 KWON T and CHOI J W. Multi-group random access resource allocation for M2M devices in multicell systems[J]. IEEE Communications Letters, 2012, 16(6): 834–837. doi: 10.1109/LCOMM.2012.041112.112568 LIU Dantong, CHEN Yue, CHAI K K, et al. Opportunistic user association for multi-service HetNets using Nash bargaining solution[J]. IEEE Communications Letters, 2014, 18(3): 463–466. doi: 10.1109/LCOMM.2014.012314.140090 LIU Yi, YUEN C, CAO Xianghui, et al. Design of a scalable hybrid MAC protocol for heterogeneous M2M networks[J]. IEEE Internet of Things Journal, 2014, 1(1): 99–111. doi: 10.1109/JIOT.2014.2310425 HUANG Yao, TIAN Hui, ZHANG Jie, et al. Rate allocation scheme for Machine-to-Machine service based on 3GPP in heterogeneous wireless networks[J]. China Communications, 2013, 10(9): 65–71. doi: 10.1109/CC.2013.6623504 NESSA A, KADOCH M, and RONG Bo. Fountain coded cooperative communications for LTE-A connected heterogeneous M2M network[J]. IEEE Access, 2016(4): 5280–5292. doi: 10.1109/ACCESS.2016.2601031 SHAFIQ M Z, JI Lusheng, LIU A X, et al. Large-scale measurement and characterization of cellular Machine-to-Machine traffic[J]. IEEE/ACM Transactions on Networking, 2013, 21(6): 1960–1973. doi: 10.1109/TNET.2013.2256431 YE Qiaoyang, RONG Beiyu, CHEN Yudong, et al. User association for load balancing in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(6): 2706–2716. doi: 10.1109/TWC.2013.040413.120676 鐘衛(wèi). 有限反饋認(rèn)知無(wú)線電動(dòng)態(tài)頻譜共享技術(shù)研究[D]. [博士論文], 上海交通大學(xué), 2011.ZHONG Wei. Limited feedback dynamic spectrum sharing in cognitive radio systems[D]. [Ph.D. dissertation], Shanghai Jiao Tong University, 2011. MONDERER D and SHAPLEY L S. Potential games[J]. Games and Economic Behavior, 1996, 14(1): 124–143. doi: 10.1006/game.1996.0044 SASTRY P S, PHANSALKAR V V, and THATHACHAR M A L. Decentralized learning of Nash equilibria in multi-person stochastic games with incomplete information[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(5): 769–777. doi: 10.1109/21.293490 -