一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一種人與人和物到物業(yè)務(wù)共存下的異構(gòu)蜂窩網(wǎng)絡(luò)柔性接入策略

田輝 何雷 馬文峰 王聰

田輝, 何雷, 馬文峰, 王聰. 一種人與人和物到物業(yè)務(wù)共存下的異構(gòu)蜂窩網(wǎng)絡(luò)柔性接入策略[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 1918-1925. doi: 10.11999/JEIT190676
引用本文: 田輝, 何雷, 馬文峰, 王聰. 一種人與人和物到物業(yè)務(wù)共存下的異構(gòu)蜂窩網(wǎng)絡(luò)柔性接入策略[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 1918-1925. doi: 10.11999/JEIT190676
Hui TIAN, Lei HE, Wenfeng MA, Cong WANG. A Flexible Network Access Scheme in Heterogeneous Cell Networks with H2H and M2M Coexistence[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1918-1925. doi: 10.11999/JEIT190676
Citation: Hui TIAN, Lei HE, Wenfeng MA, Cong WANG. A Flexible Network Access Scheme in Heterogeneous Cell Networks with H2H and M2M Coexistence[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1918-1925. doi: 10.11999/JEIT190676

一種人與人和物到物業(yè)務(wù)共存下的異構(gòu)蜂窩網(wǎng)絡(luò)柔性接入策略

doi: 10.11999/JEIT190676 cstr: 32379.14.JEIT190676
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61771486, 61671472),江蘇省博士后科研資助計(jì)劃項(xiàng)目(2019K090)
詳細(xì)信息
    作者簡(jiǎn)介:

    田輝:男,1987年生,講師,研究方向?yàn)镸2M通信、資源分配、協(xié)同通信

    何雷:男,1978年生,講師,研究方向?yàn)闊o(wú)人機(jī)智能平臺(tái)、無(wú)線通信網(wǎng)絡(luò)、軍事運(yùn)籌學(xué)

    馬文峰:男,1974年生,副教授,研究方向?yàn)槲锫?lián)網(wǎng)、5G通信

    王聰:男,1975年生,副教授,研究方向?yàn)槲锫?lián)網(wǎng)、計(jì)算機(jī)網(wǎng)絡(luò)

    通訊作者:

    田輝 jaytianhui@163.com

  • 1)本文中主要考慮業(yè)務(wù)對(duì)帶寬資源的需求。
  • 2)每一個(gè)代理節(jié)點(diǎn)按照其行為概率分布將0~1區(qū)間范圍內(nèi),劃分成不同的區(qū)域,其中每個(gè)行為對(duì)應(yīng)的區(qū)域大小等于其概率。然后,代理節(jié)點(diǎn)產(chǎn)生一個(gè)0和1之間的隨機(jī)數(shù),選擇隨機(jī)數(shù)位于區(qū)域所對(duì)應(yīng)的行為。
  • 中圖分類號(hào): TN915.04

A Flexible Network Access Scheme in Heterogeneous Cell Networks with H2H and M2M Coexistence

Funds: The National Natural Science Foundation of China (61771486, 61671472), Jiangsu Planned Projects for Postdoctoral Research Funds (2019K090)
  • 摘要:

    針對(duì)人與人(H2H)和物到物(M2M)業(yè)務(wù)共存的異構(gòu)無(wú)線網(wǎng)絡(luò),該文設(shè)計(jì)了一種根據(jù)業(yè)務(wù)特性的代理節(jié)點(diǎn)的網(wǎng)絡(luò)選擇策略,用博弈論對(duì)以保障兩類業(yè)務(wù)服務(wù)質(zhì)量(QoS)需求和網(wǎng)絡(luò)負(fù)載均衡為目標(biāo)的代理節(jié)點(diǎn)網(wǎng)絡(luò)選擇問(wèn)題進(jìn)行建模,并分析了該博弈模型納什均衡(NE)的存在性和可行性;同時(shí),提出了基于學(xué)習(xí)自動(dòng)機(jī)的分布式網(wǎng)絡(luò)-信道選擇算法(DNCSALA),求得該博弈的納什均衡。仿真結(jié)果表明,所提算法能夠獲得與窮舉搜索算法相近的性能,可滿足共存場(chǎng)景中不同類型業(yè)務(wù)的QoS需求并提高網(wǎng)絡(luò)資源利用率。

  • 圖  1  剛性業(yè)務(wù)與柔性業(yè)務(wù)滿意度隨分配帶寬變化仿真圖

    圖  2  DNCSALA中剛性代理節(jié)點(diǎn)4的行動(dòng)概率進(jìn)化曲線圖,(${\gamma ^{\rm ave}} = 5$ dB, ${M_f} = 4$, ${M_r} = 4$, ${{}_{\rm req}} = \{ 0.5,0.6,0.7,0.7\} $)

    圖  3  不同算法下全網(wǎng)和收益隨SNR變化曲線圖(仿真參數(shù)同圖2)

    圖  4  不同算法的滿意度性能對(duì)比柱狀圖(仿真參數(shù)同圖2)

    圖  5  不同算法的負(fù)載均衡指數(shù)對(duì)比柱狀圖(仿真參數(shù)同圖2)

    表  1  基于學(xué)習(xí)自動(dòng)機(jī)的分布式網(wǎng)絡(luò)選擇算法(DNCSALA)

     (1) 首先,初始化每個(gè)代理節(jié)點(diǎn)第0時(shí)刻的行為概率分布${ {{p} }_i}(0)$為$p_{ik}^j(0) = {1 / {\left(1 + \displaystyle\sum\nolimits_{j \in {\cal{N}}} {{K_j}} \right)}}$, $\forall i \in {\cal M},j \in {\cal N}$。每一個(gè)代理節(jié)點(diǎn)根據(jù)自   己的行為概率分布${ {{p} }_i}(0)$選擇一個(gè)行為;
     (2) 在每一個(gè)時(shí)刻$t > 0$,每一個(gè)代理節(jié)點(diǎn)都根據(jù)當(dāng)前時(shí)刻的概率分布${ {{p} }_i}(0)$選擇一個(gè)行為(${s_i}(t)$);
     (3) 基站根據(jù)所有代理節(jié)點(diǎn)的行為,計(jì)算出收益,并將其廣播給所有代理節(jié)點(diǎn);
     (4) 在獲得反應(yīng)函數(shù)之后,每一個(gè)代理節(jié)點(diǎn)根據(jù)式(16),更新自己的行為概率分布, 其中$0 < {\zeta ^s} < 1$表示步長(zhǎng)參數(shù);
       $\left. \begin{aligned} & {p_{ik}^j(t + 1) = p_{ik}^j(t) - {\zeta ^s}{\gamma _i}(t)p_{ik}^j(t),\quad \quad \quad\quad {s_i}(t) \ne {\rm{CH} }_{ik}^j} \\ & {p_{ik}^j(t + 1) = p_{ik}^j(t) + {\zeta ^s}{\gamma _i}(t)(1 - p_{ik}^j(t)),\quad \;\,{s_i}(t) = {\rm{CH} }_{ik}^j} \end{aligned} \right\}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\qquad\qquad (16)$
     (5) 如果對(duì)于任意$i \in {\cal M}$, 其行為概率分布存在一個(gè)元素接近1,確切地說(shuō)等于0.99,那么算法停止。否則,跳轉(zhuǎn)到步驟(2)。
    下載: 導(dǎo)出CSV
  • AGIWAL M, ROY A, and SAXENA N. Next generation 5G wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1617–1655. doi: 10.1109/COMST.2016.2532458
    AKPAKWU G A, SILVA B J, HANCKE G P, et al. A survey on 5G networks for the Internet of Things: Communication technologies and challenges[J]. IEEE Access, 2018(6): 3619–3647. doi: 10.1109/ACCESS.2017.2779844
    WANG Hai and ABRAHAM O F. A survey of enabling technologies of low power and long range Machine-to-Machine communications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2621–2639. doi: 10.1109/COMST.2017.2721379
    XIA Nian, CHEN H H, and YANG C S. Radio resource management in Machine-to-Machine communications-a survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 791–828. doi: 10.1109/COMST.2017.2765344
    李寧, 林家儒. CDMA/OFDMA異構(gòu)網(wǎng)絡(luò)中最小化中斷概率的網(wǎng)絡(luò)選擇方案[J]. 電子與信息學(xué)報(bào), 2011, 33(12): 2965–2970. doi: 10.3724/SP.J.1146.2011.00387

    LI Ning and LIN Jiaru. Network selection strategy for minimizing outage probability in CDMA/OFDMA heterogeneous networks[J]. Journal of Electronics &Information Technology, 2011, 33(12): 2965–2970. doi: 10.3724/SP.J.1146.2011.00387
    KUMAR A, MALLIK R K, and SCHOBER R. A probabilistic approach to modeling users’ network selection in the presence of heterogeneous wireless networks[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7): 3331–3341. doi: 10.1109/TVT.2013.2297437
    DU Zhiyong, WU Qihui, and YANG Panlong. Dynamic user demand driven online network selection[J]. IEEE Communications Letters, 2014, 18(3): 419–422. doi: 10.1109/LCOMM.2014.011214.132617
    杜白, 李紅艷, 龍彥. 最小最大剩余服務(wù)時(shí)間的異構(gòu)網(wǎng)絡(luò)選擇算法[J]. 通信學(xué)報(bào), 2015, 36(8): 104–109. doi: 10.11959/j.issn.1000-436x.2015231

    DU Bai, LI Hongyan, and LONG Yan. Network selection algorithm in heterogeneous wireless networks to minimize the maximum residual service time[J]. Journal on Communications, 2015, 36(8): 104–109. doi: 10.11959/j.issn.1000-436x.2015231
    TSENG L C, CHIEN F T, ZHANG Daqiang, et al. Network selection in cognitive heterogeneous networks using stochastic learning[J]. IEEE Communications Letters, 2013, 17(12): 2304–2307. doi: 10.1109/LCOMM.2013.102113.131876
    KWON T and CHOI J W. Multi-group random access resource allocation for M2M devices in multicell systems[J]. IEEE Communications Letters, 2012, 16(6): 834–837. doi: 10.1109/LCOMM.2012.041112.112568
    LIU Dantong, CHEN Yue, CHAI K K, et al. Opportunistic user association for multi-service HetNets using Nash bargaining solution[J]. IEEE Communications Letters, 2014, 18(3): 463–466. doi: 10.1109/LCOMM.2014.012314.140090
    LIU Yi, YUEN C, CAO Xianghui, et al. Design of a scalable hybrid MAC protocol for heterogeneous M2M networks[J]. IEEE Internet of Things Journal, 2014, 1(1): 99–111. doi: 10.1109/JIOT.2014.2310425
    HUANG Yao, TIAN Hui, ZHANG Jie, et al. Rate allocation scheme for Machine-to-Machine service based on 3GPP in heterogeneous wireless networks[J]. China Communications, 2013, 10(9): 65–71. doi: 10.1109/CC.2013.6623504
    NESSA A, KADOCH M, and RONG Bo. Fountain coded cooperative communications for LTE-A connected heterogeneous M2M network[J]. IEEE Access, 2016(4): 5280–5292. doi: 10.1109/ACCESS.2016.2601031
    SHAFIQ M Z, JI Lusheng, LIU A X, et al. Large-scale measurement and characterization of cellular Machine-to-Machine traffic[J]. IEEE/ACM Transactions on Networking, 2013, 21(6): 1960–1973. doi: 10.1109/TNET.2013.2256431
    YE Qiaoyang, RONG Beiyu, CHEN Yudong, et al. User association for load balancing in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(6): 2706–2716. doi: 10.1109/TWC.2013.040413.120676
    鐘衛(wèi). 有限反饋認(rèn)知無(wú)線電動(dòng)態(tài)頻譜共享技術(shù)研究[D]. [博士論文], 上海交通大學(xué), 2011.

    ZHONG Wei. Limited feedback dynamic spectrum sharing in cognitive radio systems[D]. [Ph.D. dissertation], Shanghai Jiao Tong University, 2011.
    MONDERER D and SHAPLEY L S. Potential games[J]. Games and Economic Behavior, 1996, 14(1): 124–143. doi: 10.1006/game.1996.0044
    SASTRY P S, PHANSALKAR V V, and THATHACHAR M A L. Decentralized learning of Nash equilibria in multi-person stochastic games with incomplete information[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(5): 769–777. doi: 10.1109/21.293490
  • 加載中
圖(5) / 表(1)
計(jì)量
  • 文章訪問(wèn)數(shù):  2605
  • HTML全文瀏覽量:  911
  • PDF下載量:  43
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-09-03
  • 修回日期:  2020-02-16
  • 網(wǎng)絡(luò)出版日期:  2020-03-12
  • 刊出日期:  2020-08-18

目錄

    /

    返回文章
    返回