機載多通道SAR運動目標方位向速度和法向速度聯合估計算法
doi: 10.11999/JEIT190672 cstr: 32379.14.JEIT190672
-
1.
中國科學院空天信息創(chuàng)新研究院 北京 100094
-
2.
微波成像技術國家重點實驗室 北京 100190
-
3.
中國科學院大學 北京 100049
Joint Estimation Algorithm for Azimuth Velocity and Normal Velocity of Moving Targets in Airborne Multi-channel SAR
-
1.
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
-
2.
National Key Laboratory of Microwave Imaging Technology, Beijing 100190, China
-
3.
University of Chinese Academy of Sciences, Beijing 100049, China
-
摘要:
對運動目標進行SAR成像時,參數估計是必不可少的?,F有算法主要針對運動目標的徑向速度和方位向速度進行估計,而對3維運動目標的法向速度無法估計。該文利用L型基線的機載多通道SAR系統(tǒng),提出一種方位向速度和法向速度的聯合估計算法。該算法在距離-多普勒域提取運動目標信號,并利用多幅SAR圖像之間的相位差進行方位向速度和法向速度的聯合估計。該算法不依賴圖像配準,不需要解多普勒模糊,因此具有較高的估計精度和魯棒性,有較強的實際意義和應用價值。
Abstract:Parameter estimation is essential for SAR imaging of moving targets. The existing algorithms mainly estimate the radial velocity and azimuth velocity of the moving target, but the normal velocity of the three-dimensional moving target can not be estimated. In this paper, a joint estimation algorithm of azimuth velocity and normal velocity is proposed by using an airborne multi-channel SAR system with L-shaped baseline. The algorithm extracts the moving target signal in Range-Doppler domain, and estimates the azimuth and normal velocity jointly using the phase differences between multiple SAR images. The algorithm does not rely on image registration, does not need to solve Doppler ambiguity. Therefore, the algorithm has high estimation accuracy and robustness, and has strong practical significance and application value.
-
表 1 SAR系統(tǒng)仿真基本參數
中心頻率 飛行速度 飛行高度 最近斜距 PRF 信噪比 多普勒帶寬 順軌基線 交軌基線 9.6 GHz 150 m/s 7500 m 20 km 2000 10 dB 500 Hz 1 m 1 m 下載: 導出CSV
表 3 運動目標速度估計結果及誤差(m/s)
理論方位向速度 理論法向速度 估計方位向速度 估計法向速度 方位向速度估計誤差 法向速度估計誤差 運動目標1 10.00 10.00 9.85 10.00 0.15 0 運動目標2 10.00 0 9.84 1.15×10–15 0.16 1.15×10–15 運動目標3 0 10.00 7.93×10–2 9.90 7.93×10–2 0.10 下載: 導出CSV
-
PERRY R P, DIPIETRO R C, and FANTE R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188–200. doi: 10.1109/7.745691 FIENUP J R. Detecting moving targets in SAR imagery by focusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 794–809. doi: 10.1109/7.953237 JAO J K. Theory of synthetic aperture radar imaging of a moving target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 1984–1992. doi: 10.1109/36.951089 MARQUES P A C and DIAS J M B. Velocity estimation of fast moving targets using a single SAR sensor[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(5): 75–89. doi: 10.1109/TAES.2005.1413748 BARBAROSSA S and FARINA A. Detection and imaging of moving objects with synthetic aperture radar. 2. Joint time-frequency analysis by wigner-ville distribution[J]. IEE Proceedings F - Radar and Signal Processing, 1992, 139(1): 89–97. doi: 10.1049/ip-f-2.1992.0011 WANG Zhirui, XIA Xianggen, XU Jia, et al. Ground moving target imaging based on 2-D velocity search in high resolution SAR[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 68–72. SHI Hongyin, YANG Xiaoyan, ZHOU Qiuxiao, et al. SAR slow moving target imaging based on over-sampling smooth algorithm[J]. Chinese Journal of Electronics, 2017, 26(4): 876–882. doi: 10.1049/cje.2017.06.005 YANG Wei, CHEN Jie, LIU Wei, et al. Moving target azimuth velocity estimation for the MASA mode based on sequential SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 2780–2790. doi: 10.1109/JSTARS.2016.2641744 SU Jia, TAO Haihong, WANG Ling, et al. Coherently integrated cubic function based doppler parameters estimation for moving-target imaging[C]. 2017 International Applied Computational Electromagnetics Society Symposium, Suzhou, China, 2017: 1–2. WANG Hanyun and JIANG Yicheng. Real-time parameter estimation for SAR moving target based on WVD slice and FrFT[J]. Electronics Letters, 2018, 54(1): 47–49. doi: 10.1049/el.2017.1740 LI Zhongyu, WU Junjie, LIU Zhutian, et al. An optimal 2-D spectrum matching method for SAR ground moving target imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5961–5974. doi: 10.1109/TGRS.2018.2829166 魏翔飛, 王小青, 種勁松. 一種基于局域中心頻率的SAR圖像艦船方位向速度估計方法[J]. 電子與信息學報, 2018, 40(9): 2242–2249. doi: 10.11999/JEIT170991WEI Xiangfei, WANG Xiaoqing, and CHONG Jinsong. Ship azimuthal speed estimation method based on local region doppler centroid in SAR images[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2242–2249. doi: 10.11999/JEIT170991 王超, 王巖飛, 王琦, 等. 基于回波序列最小二乘擬合的高分辨率SAR運動目標速度估計[J]. 電子與信息學報, 2019, 41(5): 1055–1062. doi: 10.11999/JEIT180695WANG Chao, WANG Yanfei, WANG Qi, et al. Velocity estimation of moving targets based on least square fitting of high-resolution SAR echo sequences[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1055–1062. doi: 10.11999/JEIT180695 HE Xiongpeng, LIAO Guisheng, XU Jingwei, et al. Robust radial velocity estimation based on joint-pixel normalized sample covariance matrix and shift vector for moving targets[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 221–225. doi: 10.1109/LGRS.2018.2871950 WANG Genyuan, XIA Xianggen, and CHEN V C. Three-dimensional ISAR imaging of maneuvering targets using three receivers[J]. IEEE Transactions on Image Processing, 2001, 10(3): 436–447. doi: 10.1109/83.908519 ZHANG Qun and YEO T S. Three-dimensional SAR imaging of a ground moving target using the InISAR technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(9): 1818–1828. doi: 10.1109/TGRS.2004.831863 ZHANG Qun, YEO T S, DU Gan, et al. Estimation of three-dimensional motion parameters in interferometric ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(2): 292–300. doi: 10.1109/TGRS.2003.815669 湯立波, 李道京, 洪文, 等. 基于順軌-交軌InSAR技術的運動艦船目標三維成像[J]. 系統(tǒng)工程與電子技術, 2008, 30(9): 1669–1673. doi: 10.3321/j.issn:1001-506X.2008.09.017TANG Libo, LI Daojing, HONG Wen, et al. Three-dimensional imaging of moving ships with 3D motion based on AT-CT InSAR[J]. Systems Engineering and Electronics, 2008, 30(9): 1669–1673. doi: 10.3321/j.issn:1001-506X.2008.09.017 尹建鳳, 李道京, 王愛明, 等. 基于星載毫米波順軌-交軌InISAR的空間運動目標三維成像技術研究[J]. 宇航學報, 2013, 34(2): 237–245. doi: 10.3873/j.issn.1000-1328.2013.02.013YIN Jianfeng, LI Daojing, WANG Aiming, et al. Three-dimensional imaging technique of space moving target based on spaceborne along-cross track millimeter-wave In-ISAR[J]. Journal of Astronautics, 2013, 34(2): 237–245. doi: 10.3873/j.issn.1000-1328.2013.02.013 -