一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于模式識(shí)別的生物醫(yī)學(xué)圖像處理研究現(xiàn)狀

徐瑩瑩 沈紅斌

徐瑩瑩, 沈紅斌. 基于模式識(shí)別的生物醫(yī)學(xué)圖像處理研究現(xiàn)狀[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 201-213. doi: 10.11999/JEIT190657
引用本文: 徐瑩瑩, 沈紅斌. 基于模式識(shí)別的生物醫(yī)學(xué)圖像處理研究現(xiàn)狀[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 201-213. doi: 10.11999/JEIT190657
Yingying XU, Hongbin SHEN. Review of Research on Biomedical Image Processing Based on Pattern Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(1): 201-213. doi: 10.11999/JEIT190657
Citation: Yingying XU, Hongbin SHEN. Review of Research on Biomedical Image Processing Based on Pattern Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(1): 201-213. doi: 10.11999/JEIT190657

基于模式識(shí)別的生物醫(yī)學(xué)圖像處理研究現(xiàn)狀

doi: 10.11999/JEIT190657 cstr: 32379.14.JEIT190657
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61803196, 61671288),廣東省自然科學(xué)基金(2018030310282)
詳細(xì)信息
    作者簡(jiǎn)介:

    徐瑩瑩:女,1989年生,副教授,研究方向?yàn)樯飯D像信息學(xué)與模式識(shí)別

    沈紅斌:男,1979年生,教授,研究方向?yàn)槟J阶R(shí)別、數(shù)據(jù)挖掘以及生物信息學(xué)

    通訊作者:

    沈紅斌 hbshen@sjtu.edu.cn

  • 中圖分類號(hào): TN911.73

Review of Research on Biomedical Image Processing Based on Pattern Recognition

Funds: The National Natural Science Foundation of China (61803196, 61671288), The Natural Science Foundation of Guangdong Province (2018030310282)
  • 摘要:

    海量的生物醫(yī)學(xué)圖像蘊(yùn)含著豐富的信息,模式識(shí)別算法能夠從中挖掘規(guī)律并指導(dǎo)生物醫(yī)學(xué)基礎(chǔ)研究和臨床應(yīng)用。近年來(lái),模式識(shí)別和機(jī)器學(xué)習(xí)理論和實(shí)踐不斷完善,尤其是深度學(xué)習(xí)的廣泛研究和應(yīng)用,促使人工智能、模式識(shí)別與生物醫(yī)學(xué)的交叉研究成為了當(dāng)前的前沿?zé)狳c(diǎn),相關(guān)的生物醫(yī)學(xué)圖像研究有了突破式的進(jìn)展。該文首先簡(jiǎn)述模式識(shí)別的常用算法,然后總結(jié)了這些算法應(yīng)用于熒光顯微圖像、組織病理圖像、醫(yī)療影像等多種圖像中的挑戰(zhàn)性和國(guó)內(nèi)外研究現(xiàn)狀,最后對(duì)幾個(gè)潛在研究方向進(jìn)行了分析和展望。

  • 圖  1  多種生物醫(yī)學(xué)圖像的示例及在臨床和研究中的主要應(yīng)用

    圖  2  傳統(tǒng)模式識(shí)別方法處理生物醫(yī)學(xué)圖像的一般步驟

    圖  3  經(jīng)典卷積神經(jīng)網(wǎng)絡(luò)模型的時(shí)間軸及特點(diǎn)

    圖  4  熒光點(diǎn)的兩種建模方法示意圖

    圖  5  當(dāng)前生物醫(yī)學(xué)圖像研究中的主要挑戰(zhàn)和可行解決方向

    表  1  常用的生物圖像數(shù)據(jù)集

    類型數(shù)據(jù)集數(shù)據(jù)量特點(diǎn)
    熒光顯微圖像CYCLoPs[23]超3×105幅蛋白熒光圖像標(biāo)注酵母細(xì)胞中蛋白質(zhì)16類亞細(xì)胞位置及表達(dá)量
    HPA IF[24]2.2×105幅IF圖像20余個(gè)細(xì)胞系的蛋白圖像,標(biāo)注34類亞細(xì)胞位置
    2D HeLa[25]862幅熒光顯微圖像HeLa宮頸癌細(xì)胞系,標(biāo)注10個(gè)標(biāo)志蛋白的表達(dá)模式
    2D CHO[26]327幅熒光顯微圖像中國(guó)倉(cāng)鼠卵巢細(xì)胞圖像,標(biāo)注5個(gè)標(biāo)志蛋白的表達(dá)模式
    組織病理圖像BreakHis[27]7909幅H&E圖像乳腺良性和惡性腫瘤圖像,共8類病理狀態(tài)
    TCGA[28]18462幅H&E圖像記錄36類癌癥的病理檢查及治療數(shù)據(jù),
    TMAD[29]3726幅IHC圖像對(duì)蛋白質(zhì)著色的評(píng)分,分為4個(gè)等級(jí)
    HPA IHC[30]約106幅IHC圖像人體正常和癌癥組織的蛋白圖像,標(biāo)注3類亞細(xì)胞位置
    醫(yī)療影像圖像BRATS[31]65幅MRI圖像經(jīng)專家人工分割的腦膠質(zhì)瘤患者的多對(duì)比度MR掃描圖像,兩組癌癥分級(jí)
    ADNI[32]2000余名志愿者的MRI、PET圖像阿爾茨海默病患者和健康組對(duì)照
    ISLES[33]103位病人的MRI圖像缺血性中風(fēng)病人圖像,由專家人工分割出損傷的腦組織
    DeepLesion[34]32735幅CT圖像腎臟病變、骨病變、肺結(jié)節(jié)、淋巴結(jié)腫大等多種病理診斷
    下載: 導(dǎo)出CSV

    表  2  常用的生物圖像處理工具

    類型處理工具作用
    通用ImageJ[36]對(duì)多種生物醫(yī)學(xué)圖像做如縮放、旋轉(zhuǎn)、平滑、區(qū)域分割、像素統(tǒng)計(jì)等多種處理分析
    CellProfiler[37]分割熒光點(diǎn)或細(xì)胞,提取細(xì)胞的統(tǒng)計(jì)學(xué)特征
    熒光顯微圖像Squassh[38]分割和定量亞細(xì)胞結(jié)構(gòu)
    DeepLoc[39]基于熒光圖像預(yù)測(cè)蛋白質(zhì)的亞細(xì)胞位置
    CellOrganizer[40]對(duì)多種細(xì)胞亞結(jié)構(gòu)建立生成式模型,產(chǎn)生新的細(xì)胞圖像或視頻
    OMERO.searcher[41]圖像匹配和檢索
    組織病理圖像HistomicsML[42]交互式機(jī)器學(xué)習(xí)系統(tǒng),訓(xùn)練基于病理圖像的分類器
    IHC Profiler[43]IHC圖像統(tǒng)計(jì)學(xué)特征提取,著色評(píng)分
    iLocator[44-46]基于IHC圖像的蛋白質(zhì)亞細(xì)胞位置預(yù)測(cè)系統(tǒng)
    醫(yī)療影像圖像RayPlus[47]在線的云端的智能醫(yī)學(xué)影像平臺(tái),集成3維影像重建、??朴跋穹治龅裙δ?/td>
    Mimics[48]一套高度整合而且易用的3D圖像生成及編輯處理軟件
    ANTS[49]提供了高級(jí)的工具用于大腦圖像配準(zhǔn)映射,在解釋和可視化多維數(shù)據(jù)方面有優(yōu)勢(shì)
    FSL[50]用于分析fMRI,MRI和DTI大腦成像數(shù)據(jù)的綜合軟件庫(kù)
    下載: 導(dǎo)出CSV
  • MEIJERING E, CARPENTER A E, PENG Hanchuan, et al. Imagining the future of bioimage analysis[J]. Nature Biotechnology, 2016, 34(12): 1250–1255. doi: 10.1038/nbt.3722
    江貴平, 秦文健, 周壽軍, 等. 醫(yī)學(xué)圖像分割及其發(fā)展現(xiàn)狀[J]. 計(jì)算機(jī)學(xué)報(bào), 2015, 38(6): 1222–1242. doi: 10.11897/SP.J.1016.2015.01222

    JIANG Guiping, QIN Wenjian, ZHOU Shoujun, et al. State-of-the-Art in medical image segmentation[J]. Chinese Journal of Computers, 2015, 38(6): 1222–1242. doi: 10.11897/SP.J.1016.2015.01222
    廖苗, 趙于前, 曾業(yè)戰(zhàn), 等. 基于圖割和邊緣行進(jìn)的肝臟CT序列圖像分割[J]. 電子與信息學(xué)報(bào), 2016, 38(6): 1552–1556. doi: 10.11999/JEIT151005

    LIAO Miao, ZHAO Yuqian, ZENG Yezhan, et al. Liver segmentation from abdominal CT volumes based on graph cuts and border marching[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1552–1556. doi: 10.11999/JEIT151005
    文登偉, 張東波, 湯紅忠, 等. 融合紋理與形狀特征的HEp-2細(xì)胞分類[J]. 電子與信息學(xué)報(bào), 2017, 39(7): 1599–1605. doi: 10.11999/JEIT161090

    WEN Dengwei, ZHANG Dongbo, TANG Hongzhong, et al. HEp-2 cell classification by fusing texture and shape features[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1599–1605. doi: 10.11999/JEIT161090
    田娟秀, 劉國(guó)才, 谷珊珊, 等. 醫(yī)學(xué)圖像分析深度學(xué)習(xí)方法研究與挑戰(zhàn)[J]. 自動(dòng)化學(xué)報(bào), 2018, 44(3): 401–424. doi: 10.16383/j.aas.2018.c170153

    TIAN Juanxiu, LIU Guocai, GU Shanshan, et al. Deep learning in medical image analysis and its challenges[J]. Acta Automatica Sinica, 2018, 44(3): 401–424. doi: 10.16383/j.aas.2018.c170153
    DE MATOS J, DE SOUZA BRITTO JR A, OLIVEIRA L E S, et al. Histopathologic image processing: A review[J]. arXiv: 1904.07900, 2019.
    XU Yingying, YAO Lixiu, and SHEN Hongbin. Bioimage-based protein subcellular location prediction: A comprehensive review[J]. Frontiers of Computer Science, 2018, 12(1): 26–39. doi: 10.1007/s11704-016-6309-5
    LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42: 60–88. doi: 10.1016/j.media.2017.07.005
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Taboe, USA, 2012: 1097–1105.
    AWAD A I and HASSABALLAH M. Image Feature Detectors and Descriptors: Foundations and Applications[M]. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-28854-3.
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv: 1409.1556, 2014.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. 2015 IEEE Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440.
    SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]. The 31st AAAI Conference on Artificial Intelligence, San Francisco, 2017: 4278–4284.
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. The 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4700–4708.
    IANDOLA F N, HAN Song, MOSKEWICZ M W, et al. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5 MB model size[J]. arXiv: 1602.07360, 2016.
    HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv: 1704.04861, 2017.
    TAN Mingxing and LE Q V. Efficientnet: Rethinking model scaling for convolutional neural networks[J]. arXiv: 1905.11946, 2019.
    CIOMPI F, DE HOOP B, VAN RIEL S J, et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box[J]. Medical Image Analysis, 2015, 26(1): 195–202. doi: 10.1016/j.media.2015.08.001
    KHOSRAVI P, KAZEMI E, IMIELINSKI M, et al. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images[J]. EBioMedicine, 2018, 27: 317–328. doi: 10.1016/j.ebiom.2017.12.026
    KOH J L Y, CHONG Y T, FRIESEN H, et al. Cyclops: A comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in saccharomyces cerevisiae[J]. G3: Genes, Genomes, Genetics, 2015, 5(6): 1223–1232. doi: 10.1534/g3.115.017830
    THUL P J, ?KESSON L, WIKING M, et al. A subcellular map of the human proteome[J]. Science, 2017, 356(6340): eaal3321. doi: 10.1126/science.aal3321
    BOLAND M V and MURPHY R F. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of hela cells[J]. Bioinformatics, 2001, 17(12): 1213–1223. doi: 10.1093/bioinformatics/17.12.1213
    彭佳林, 揭萍. 基于序列間先驗(yàn)約束和多視角信息融合的肝臟CT圖像分割[J]. 電子與信息學(xué)報(bào), 2018, 40(4): 971–978. doi: 10.11999/JEIT170933

    PENG Jialin and JIE Ping. Liver segmentation from CT image based on sequential constraint and multi-view information fusion[J]. Journal of Electronics &Information Technology, 2018, 40(4): 971–978. doi: 10.11999/JEIT170933
    SPANHOL F A, OLIVEIRA L S, PETITJEAN C, et al. A dataset for breast cancer histopathological image classification[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(7): 1455–1462. doi: 10.1109/TBME.2015.2496264
    The Cancer Genome Atlas Research Network, WEINSTEIN J N, COLLISSON E A, et al. The cancer genome atlas pan-cancer analysis project[J]. Nature Genetics, 2015, 45(10): 1113–1120. doi: 10.1038/ng.2764
    MARINELLI R J, MONTGOMERY K, LIU C L, et al. The stanford tissue microarray database[J]. Nucleic Acids Research, 2008, 36(S1): D871–D877. doi: 10.1093/nar/gkm861
    UHLéN M, FAGERBERG L, HALLSTR?M B M, et al. Tissue-based map of the human proteome[J]. Science, 2015, 347(6220): 1260419. doi: 10.1126/science.1260419
    MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark (brats)[J]. IEEE Transactions on Medical Imaging, 2015, 34(10): 1993–2024. doi: 10.1109/TMI.2014.2377694
    IWATSUBO T. Alzheimer's disease neuroimaging initiative (ADNI)[J]. Nihon Rinsho Japanese Journal of Clinical Medicine, 2011, 69(S8): 570–574.
    MAIER O, MENZE B H, VON DER GABLENTZ J, et al. ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral mri[J]. Medical Image Analysis, 2017, 35: 250–269. doi: 10.1016/j.media.2016.07.009
    YAN Ke, WANG Xiaosong, LU Le, et al. Deeplesion: Automated mining of large-scale lesion annotations and universal lesion detection with deep learning[J]. Journal of Medical Imaging, 2018, 5(3): 036501. doi: 10.1117/1.JMI.5.3.036501
    RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
    SCHINDELIN J, RUEDEN C T, HINER M C, et al. The imagej ecosystem: An open platform for biomedical image analysis[J]. Molecular Reproduction & Development, 2015, 82(7/8): 518–529. doi: 10.1002/mrd.22489
    CARPENTER A E, JONES T R, LAMPRECHT M R, et al. Cellprofiler: Image analysis software for identifying and quantifying cell phenotypes[J]. Genome Biology, 2006, 7(10): R100. doi: 10.1186/gb-2006-7-10-r100
    RIZK A, PAUL G, INCARDONA P, et al. Segmentation and quantification of subcellular structures in fluorescence microscopy images using squassh[J]. Nature Protocols, 2014, 9(3): 586–596. doi: 10.1038/nprot.2014.037
    KRAUS O Z, GRYS B T, BA J, et al. Automated analysis of high-content microscopy data with deep learning[J]. Molecular Systems Biology, 2017, 13(4): 924. doi: 10.15252/msb.20177551
    MURPHY R F. Cellorganizer: Image-derived models of subcellular organization and protein distribution[J]. Methods in Cell Biology, 2012, 110: 179–193. doi: 10.1016/B978-0-12-388403-9.00007-2
    CHO B H, CAO-BERG I, BAKAL J A, et al. OMERO.searcher: Content-based image search for microscope images[J]. Nature Methods, 2012, 9(7): 633–634. doi: 10.1038/nmeth.2086
    NALISNIK M, AMGAD M, LEE S, et al. Interactive phenotyping of large-scale histology imaging data with HistomicsML[J]. Scientific Reports, 2017, 7(1): 14588. doi: 10.1038/s41598-017-15092-3
    VARGHESE F, BUKHARI A B, MALHOTRA R, et al. Ihc profiler: An open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples[J]. PLoS One, 2014, 9(5): e96801. doi: 10.1371/journal.pone.0096801
    XU Yingying, YANG Fan, and SHEN Hongbin. Incorporating organelle correlations into semi-supervised learning for protein subcellular localization prediction[J]. Bioinformatics, 2016, 32(14): 2184–2192. doi: 10.1093/bioinformatics/btw219
    XU Yingying, YANG Fan, ZHANG Yang, et al. An image-based multi-label human protein subcellular localization predictor (ilocator) reveals protein mislocalizations in cancer tissues[J]. Bioinformatics, 2013, 29(16): 2032–2040. doi: 10.1093/bioinformatics/btt320
    XU Yingying, YANG Fan, ZHANG Yang, et al. Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning[J]. Bioinformatics, 2015, 31(7): 1111–1119. doi: 10.1093/bioinformatics/btu772
    YUAN Rong, LUO Ming, SUN Zhi, et al. Rayplus: A web-based platform for medical image processing[J]. Journal of Digital Imaging, 2017, 30(2): 197–203. doi: 10.1007/s10278-016-9920-y
    MIMICS.[M/OL]. Https: //www.Materialise.Com/en/medical/software/mimics, 2019.
    AVANTS B B, TUSTISON N, and SONG Gang. Advanced normalization tools (ANTS)[R]. Pennsylvania: University of Pennsylvania, 2011: 1–35.
    SMITH S M, JENKINSON M, WOOLRICH M W, et al. Advances in functional and structural mr image analysis and implementation as fsl[J]. Neuroimage, 2004, 23(S1): S208–S219. doi: 10.1016/j.neuroimage.2004.07.051
    LOO L H, LAKSAMEETHANASAN D, and TUNG Y L. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins[J]. PLoS Computational Biology, 2014, 10(3): e1003504. doi: 10.1371/journal.pcbi.1003504
    LU A X, CHONG Y T, HSU I S, et al. Integrating images from multiple microscopy screens reveals diverse patterns of change in the subcellular localization of proteins[J]. eLife, 2018, 7: e31872. doi: 10.7554/eLife.31872
    LI Jieyue, SHARIFF A, WIKING M, et al. Estimating microtubule distributions from 2d immunofluorescence microscopy images reveals differences among human cultured cell lines[J]. PLoS One, 2012, 7(11): e50292. doi: 10.1371/journal.pone.0050292
    NANNI L and MELUCCI M. Combination of projectors, standard texture descriptors and bag of features for classifying images[J]. Neurocomputing, 2016, 173: 1602–1614. doi: 10.1016/j.neucom.2015.09.032
    COELHO L P, KANGAS J D, NAIK A W, et al. Determining the subcellular location of new proteins from microscope images using local features[J]. Bioinformatics, 2013, 29(18): 2343–2349. doi: 10.1093/bioinformatics/btt392
    P?RNAMAA T and PARTS L. Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning[J]. G3: Genes, Genomes, Genetics, 2017, 7(5): 1385–1392. doi: 10.1534/g3.116.033654
    SULLIVAN D P, WINSNES C F, ?KESSON L, et al. Deep learning is combined with massive-scale citizen science to improve large-scale image classification[J]. Nature Biotechnology, 2018, 36(9): 820–828. doi: 10.1038/nbt.4225
    RUMETSHOFER E, HOFMARCHER M, R?HRL C, et al. Human-level protein localization with convolutional neural networks[C]. The ICLR 2019, Las Cruces, USA, 2019: 1–18.
    CHEN Jiamei, QU Aiping, WANG Linwei, et al. New breast cancer prognostic factors identified by computer-aided image analysis of he stained histopathology images[J]. Scientific Reports, 2015, 5: 10690. doi: 10.1038/srep10690
    SANTAMARIA-PANG A, RITTSCHER J, GERDES M, et al. Cell segmentation and classification by hierarchical supervised shape ranking[C]. The 12th IEEE International Symposium on Biomedical Imaging, New York, USA, 2015: 1296–1299.
    GEESSINK O G F, BAIDOSHVILI A, FRELING G, et al. Toward automatic segmentation and quantification of tumor and stroma in whole-slide images of h and e stained rectal carcinomas[J]. SPIE, 2015, 9420: 94200F. doi: 10.1117/12.2081665.
    ARTETA C, LEMPITSKY V, NOBLE J A, et al. Learning to detect cells using non-overlapping extremal regions[C]. The 15th International Conference on Medical Image Computing and Computer-Assisted Intervention, Nice, France, 2012: 348–356.
    QU Aiping, CHEN Jiamei, WANG Linwei, et al. Two-step segmentation of hematoxylin-eosin stained histopathological images for prognosis of breast cancer[C]. 2014 IEEE International Conference on Bioinformatics and Biomedicine, Belfast, UK, 2014: 218–223.
    BEJNORDI B E, LIN J, GLASS B, et al. Deep learning-based assessment of tumor-associated stroma for diagnosing breast cancer in histopathology images[C]. The 14th IEEE International Symposium on Biomedical Imaging, Melbourne, Australia, 2017: 929–932. doi: 10.1109/ISBI.2017.7950668.
    SIRINUKUNWATTANA K, SNEAD D R J, and RAJPOOT N M. A stochastic polygons model for glandular structures in colon histology images[J]. IEEE Transactions on Medical Imaging, 2015, 34(11): 2366–2378. doi: 10.1109/TMI.2015.2433900
    XU Yan, LI Yang, WANG Yipei, et al. Gland instance segmentation using deep multichannel neural networks[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(12): 2901–2912. doi: 10.1109/TBME.2017.2686418
    XU Yan, JIA Zhipeng, WANG Liangbo, et al. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features[J]. BMC Bioinformatics, 2017, 18(1): 281. doi: 10.1186/s12859-017-1685-x
    BARKER J, HOOGI A, DEPEURSINGE A, et al. Automated classification of brain tumor type in whole-slide digital pathology images using local representative tiles[J]. Medical Image Analysis, 2016, 30: 60–71. doi: 10.1016/j.media.2015.12.002
    BENTAIEB A, LI-CHANG H, HUNTSMAN D, et al. A structured latent model for ovarian carcinoma subtyping from histopathology slides[J]. Medical Image Analysis, 2017, 39: 194–205. doi: 10.1016/j.media.2017.04.008
    YU K H, ZHANG Ce, BERRY G J, et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features[J]. Nature Communications, 2016, 7(1): 12474. doi: 10.1038/ncomms12474
    CHENG Jun, ZHANG Jie, HAN Yatong, et al. Integrative analysis of histopathological images and genomic data predicts clear cell renal cell carcinoma prognosis[J]. Cancer Research, 2017, 77(21): e91–e100. doi: 10.1158/0008-5472.CAN-17-0313
    SHARMA H, ZERBE N, KLEMPERT I, et al. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology[J]. Computerized Medical Imaging and Graphics, 2017, 61: 2–13. doi: 10.1016/j.compmedimag.2017.06.001
    BENTAIEB A, LI-CHANG H, HUNTSMAN D, et al. Automatic diagnosis of ovarian carcinomas via sparse multiresolution tissue representation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 629–636. doi: 10.1007/978-3-319-24553-9_77.
    WANG Chaofeng, SHI Jun, ZHANG Qi, et al. Histopathological image classification with bilinear convolutional neural networks[C]. The 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Seogwipo, South Korea, 2017: 4050–4053. doi: 10.1109/EMBC.2017.8037745.
    CIOMPI F, GEESSINK O, BEJNORDI B E, et al. The importance of stain normalization in colorectal tissue classification with convolutional networks[C]. The 14th IEEE International Symposium on Biomedical Imaging, Melbourne, Australia, 2017: 160–163. doi: 10.1109/ISBI.2017.7950492.
    SHEIKHZADEH F, WARD R K, VAN NIEKERK D, et al. Automatic labeling of molecular biomarkers of immunohistochemistry images using fully convolutional networks[J]. PLoS One, 2018, 13(1): e0190783. doi: 10.1371/journal.pone.0190783
    COUDRAY N, OCAMPO P S, SAKELLAROPOULOS T, et al. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning[J]. Nature Medicine, 2018, 24(10): 1559–1567. doi: 10.1038/s41591-018-0177-5
    KWAK J T and HEWITT S M. Nuclear architecture analysis of prostate cancer via convolutional neural networks[J]. IEEE Access, 2017, 5: 18526–18533. doi: 10.1109/ACCESS.2017.2747838
    OIKAWA K, SAITO A, KIYUNA T, et al. Pathological diagnosis of gastric cancers with a novel computerized analysis system[J]. Journal of Pathology Informatics, 2017, 8(1): 5. doi: 10.4103/2153-3539.201114
    QAISER T, MUKHERJEE A, REDDY P B C, et al. Her2 challenge contest: A detailed assessment of automated her2 scoring algorithms in whole slide images of breast cancer tissues[J]. Histopathology, 2018, 72(2): 227–238. doi: 10.1111/his.13333
    NEWBERG J and MURPHY R F. A framework for the automated analysis of subcellular patterns in human protein atlas images[J]. Journal of Proteome Research, 2008, 7(6): 2300–2308. doi: 10.1021/pr7007626
    KUMAR A, RAO A, BHAVANI S, et al. Automated analysis of immunohistochemistry images identifies candidate location biomarkers for cancers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51): 18249–18254. doi: 10.1073/pnas.1415120112
    KONDO S, TAKAGI K, NISHIDA M, et al. Computer-aided diagnosis of focal liver lesions using contrast-enhanced ultrasonography with perflubutane microbubbles[J]. IEEE Transactions on Medical Imaging, 2017, 36(7): 1427–1437. doi: 10.1109/TMI.2017.2659734
    KUPPILI V, BISWAS M, SREEKUMAR A, et al. Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization[J]. Journal of Medical Systems, 2017, 41(10): 152. doi: 10.1007/s10916-017-0862-9
    SERAG A, WILKINSON A G, TELFORD E J, et al. Segma: An automatic segmentation approach for human brain mri using sliding window and random forests[J]. Frontiers in Neuroinformatics, 2017, 11: 2. doi: 10.3389/fninf.2017.00002
    KHAN S A, NAZIR M, KHAN M A, et al. Lungs nodule detection framework from computed tomography images using support vector machine[J]. Microscopy Research & Technique, 2019, 82(8): 1256–1266. doi: 10.1002/jemt.23275
    TIZHOOSH H R and BABAIE M. Representing medical images with encoded local projections[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(10): 2267–2277. doi: 10.1109/TBME.2018.2791567
    GAO X W, HUI Rui, and TIAN Zengmin. Classification of ct brain images based on deep learning networks[J]. Computer Methods and Programs in Biomedicine, 2017, 138: 49–56. doi: 10.1016/j.cmpb.2016.10.007
    VAN TULDER G and DE BRUIJNE M. Combining generative and discriminative representation learning for lung ct analysis with convolutional restricted boltzmann machines[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1262–1272. doi: 10.1109/TMI.2016.2526687
    TERAMOTO A, FUJITA H, YAMAMURO O, et al. Automated detection of pulmonary nodules in pet/ct images: Ensemble false-positive reduction using a convolutional neural network technique[J]. Medical Physics, 2016, 43(6): 2821–2827. doi: 10.1118/1.4948498
    CHEN Hao, WU Lingyun, DOU Qi, et al. Ultrasound standard plane detection using a composite neural network framework[J]. IEEE Transactions on Cybernetics, 2017, 47(6): 1576–1586. doi: 10.1109/TCYB.2017.2685080
    AREVALO J, GONZáLEZ F A, RAMOS-POLLáN R, et al. Representation learning for mammography mass lesion classification with convolutional neural networks[J]. Computer Methods and Programs in Biomedicine, 2016, 127: 248–257. doi: 10.1016/j.cmpb.2015.12.014
    CUI Zhipeng, YANG Jie, and QIAO Yu. Brain MRI segmentation with patch-based CNN approach[C]. The 35th Chinese Control Conference, Chengdu, China, 2016: 7026–7031.
    RAJPURKAR P, IRVIN J, ZHU K, et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning[J]. arXiv: 1711.05225, 2017.
    CHRISTIANSEN E M, YANG S J, ANDO D M, et al. In silico labeling: Predicting fluorescent labels in unlabeled images[J]. Cell, 2018, 173(3): 792–803. doi: 10.1016/j.cell.2018.03.040
    BRENT R and BOUCHERON L E. Deep learning to predict microscope images[J]. Nature Methods, 2018, 15(11): 868–870. doi: 10.1038/s41592-018-0194-9
    RIVENSON Y, WANG Hongda, WEI Zhensong, et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning[J]. Nature Biomedical Engineering, 2019, 3(6): 466–477. doi: 10.1038/s41551-019-0362-y
    ZHANG Zizhao, CHEN Pingjun, MCGOUGH M, et al. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning[J]. Nature Machine Intelligence, 2019, 1(5): 236–245. doi: 10.1038/s42256-019-0052-1
    VAKOC B J, LANNING R M, TYRRELL J A, et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging[J]. Nature Medicine, 2009, 15(10): 1219–1223. doi: 10.1038/nm.1971
    JONES S A, SHIM S, HE Jiang, et al. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 2011, 8(6): 499–505. doi: 10.1038/nmeth.1605
  • 加載中
圖(5) / 表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  5080
  • HTML全文瀏覽量:  3511
  • PDF下載量:  544
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-08-29
  • 修回日期:  2019-11-12
  • 網(wǎng)絡(luò)出版日期:  2019-11-18
  • 刊出日期:  2020-01-21

目錄

    /

    返回文章
    返回