一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于同步壓縮小波變換的主信號(hào)抑制技術(shù)

吳龍文 牛金鵬 王昭 何勝陽(yáng) 趙雅琴

吳龍文, 牛金鵬, 王昭, 何勝陽(yáng), 趙雅琴. 基于同步壓縮小波變換的主信號(hào)抑制技術(shù)[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 2045-2052. doi: 10.11999/JEIT190650
引用本文: 吳龍文, 牛金鵬, 王昭, 何勝陽(yáng), 趙雅琴. 基于同步壓縮小波變換的主信號(hào)抑制技術(shù)[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 2045-2052. doi: 10.11999/JEIT190650
Longwen WU, Jinpeng NIU, Zhao WANG, Shengyang HE, Yaqin ZHAO. Primary Signal Suppression Based on Synchrosqueezed Wavelet Transform[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2045-2052. doi: 10.11999/JEIT190650
Citation: Longwen WU, Jinpeng NIU, Zhao WANG, Shengyang HE, Yaqin ZHAO. Primary Signal Suppression Based on Synchrosqueezed Wavelet Transform[J]. Journal of Electronics & Information Technology, 2020, 42(8): 2045-2052. doi: 10.11999/JEIT190650

基于同步壓縮小波變換的主信號(hào)抑制技術(shù)

doi: 10.11999/JEIT190650 cstr: 32379.14.JEIT190650
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61671185)
詳細(xì)信息
    作者簡(jiǎn)介:

    吳龍文:男,1988年生,工程師,研究方向?yàn)檩椛湓磦€(gè)體識(shí)別

    牛金鵬:男,1997年生,碩士生,研究方向?yàn)檩椛湓磦€(gè)體識(shí)別

    王昭:男,1995年生,工程師,研究方向?yàn)檩椛湓磦€(gè)體識(shí)別

    何勝陽(yáng):男,1983年生,高級(jí)工程師,研究方向?yàn)闊o(wú)線光通信

    趙雅琴:女,1976年生,教授,研究方向?yàn)檩椛湓醋R(shí)別和光通信

    通訊作者:

    趙雅琴 yaqinzhao@hit.edu.cn

  • 中圖分類號(hào): TN971

Primary Signal Suppression Based on Synchrosqueezed Wavelet Transform

Funds: The National Natural Science Foundation of China (61671185)
  • 摘要:

    在輻射源個(gè)體識(shí)別(SEI)技術(shù)中,能量較高的主信號(hào)往往導(dǎo)致微弱個(gè)體特征穩(wěn)定性降低,進(jìn)而影響最終的個(gè)體識(shí)別效果。為了解決該問(wèn)題并提升輻射源個(gè)體識(shí)別性能,該文提出基于同步壓縮小波變換的主信號(hào)抑制技術(shù)。首先,利用靜態(tài)小波變換完成對(duì)帶噪信號(hào)的去噪預(yù)處理;然后,利用同步壓縮小波變換完成對(duì)主信號(hào)的檢測(cè)和抑制,并以均方根誤差和皮爾遜相關(guān)系數(shù)為數(shù)值指標(biāo),驗(yàn)證算法的有效性;最后,在主信號(hào)抑制的基礎(chǔ)上,利用分形理論中盒維數(shù)完成對(duì)信號(hào)的特征提取,并利用單核支持向量機(jī)驗(yàn)證個(gè)體識(shí)別性能。實(shí)驗(yàn)結(jié)果表明,與主信號(hào)抑制之前相比,主信號(hào)抑制算法下個(gè)體識(shí)別率提升了10%左右,驗(yàn)證了同步壓縮小波變換的主信號(hào)抑制算法對(duì)輻射源個(gè)體識(shí)別率提升的有效性。

  • 圖  1  SWT分解過(guò)程示意圖

    圖  2  LFM信號(hào)下SST主信號(hào)抑制效果仿真

    圖  3  SST主信號(hào)抑制仿真(擴(kuò)大相位噪聲頻1偏后)

    圖  4  LFM信號(hào)源個(gè)體分形盒維數(shù)特征識(shí)別結(jié)果

    圖  5  實(shí)測(cè)數(shù)據(jù)特征規(guī)范化后特征分布

    表  1  加性相位噪聲參數(shù)

    輻射源個(gè)體與頻偏對(duì)應(yīng)的相位噪聲幅度(信相噪比(dB))
    f1=±2.75 MHzf2=±2.80 MHzf3=±3.10 MHz
    E111.989712.781515.7918
    E210.484511.672216.1877
    f21=±2.8 MHzf22=±2.9 MHzf23=±3.15 MHz
    E312.781514.030816.1394
    下載: 導(dǎo)出CSV

    表  2  實(shí)測(cè)數(shù)據(jù)特征結(jié)構(gòu)與來(lái)源

    特征序號(hào)特征來(lái)源
    1~4RF-DNA[19]
    4~8IMF-DNA[20]
    9~12BCD[18]
    13~20SIB[21]
    下載: 導(dǎo)出CSV
  • WANG Xuebao, HUANG Gaoming, ZHOU Zhiwen, et al. Radar emitter recognition based on the short time fourier transform and convolutional neural networks[C]. The 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Shanghai, China, 2017: 1–5. doi: 10.1109/CISP-BMEI.2017.8302111.
    LIANG Kaiqiang, HUANG Zhen, HU Dexiu, et al. An individual emitter recognition method combining bispectrum with wavelet entropy[C]. 2015 IEEE International Conference on Progress in Informatics and Computing, Nanjing, China, 2015: 206–210. doi: 10.1109/PIC.2015.7489838.
    GUO Haizhao, ZHANG Xiaonu, YANG Libo, et al. Improved fisher linear discriminant analysis for feature extraction of unintentional modulation on pulse by combining ambiguity function with wavelet transform[C]. IET International Radar Conference 2015, Hangzhou, China, 2015: 1–4. doi: 10.1049/cp.2015.1108.
    LI Yibing, GE Juan, LIN Yun, et al. Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting[J]. Journal of Central South University, 2014, 21(11): 4254–4260. doi: 10.1007/s11771-014-2422-5
    曹銀萍, 郭璐. 基于MATLAB的小波分析在信號(hào)去噪中的應(yīng)用[J]. 信息記錄材料, 2018, 19(7): 85–87. doi: 10.16009/j.cnki.cn13-1295/tq.2018.07.056

    CAO Yinping and GUO Lu. Application of wavelet analysis based on MATLAB in signal denoising[J]. Information Recording Materials, 2018, 19(7): 85–87. doi: 10.16009/j.cnki.cn13-1295/tq.2018.07.056
    DUDCZYK J and KAWALEC A. Fractal features of specific emitter identification[J]. Acta Physica Polonica A, 2013, 124(2): 406–409. doi: 10.12693/APhysPolA.124.406
    DUDCZYK J and KAWALEC A. Identification of emitter sources in the aspect of their fractal features[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61(3): 623–628. doi: 10.2478/bpasts-2013-0065
    WU Xiaopo, SHI Yangming, MENG Weibo, et al. Specific emitter identification for satellite communication using probabilistic neural networks[J]. International Journal of Satellite Communications and Networking, 2019, 37(3): 283–291. doi: 10.1002/sat.1286
    王歡歡, 張濤, 孟凡玉. 基于時(shí)頻域細(xì)微特征的輻射源個(gè)體識(shí)別[J]. 信息工程大學(xué)學(xué)報(bào), 2018, 19(1): 23–29. doi: 10.3969/j.issn.1671-0673.2018.01.006

    WANG Huanhuan, ZHANG Tao, and MENG Fanyu. Specific emitter identification based on time-frequency domain characteristic[J]. Journal of Information Engineering University, 2018, 19(1): 23–29. doi: 10.3969/j.issn.1671-0673.2018.01.006
    WANG Huanhuan and ZHNAG Tao. Specific emitter identification based on fractal and wavelet theories[C]. The 2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 2017: 1613–1617. doi: 10.1109/IAEAC.2017.8054286.
    WANG Wei, LIU Hui, YANG Jun’an, et al. Specific emitter identification using decomposed hierarchical feature extraction methods[C]. The 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, Guilin, China, 2017: 1639–1643. doi: 10.1109/FSKD.2017.8393011.
    HE Boxiang, WANG Fanggang, LIU Yu, et al. Specific emitter identification via multiple distorted receivers[C]. 2019 IEEE International Conference on Communications Workshops, Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8757066.
    潘一葦, 彭華, 李天昀, 等. 一種新的時(shí)分多址信號(hào)射頻特征及其在特定輻射源識(shí)別中的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2019, 41(11): 2661–2668. doi: 10.11999/JEIT190163

    PAN Yiwei, PENG Hua, LI Tianyun, et al. A novel radiometric signature of time-division multiple access signals and its application to specific emitter identification[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2661–2668. doi: 10.11999/JEIT190163
    潘一葦, 楊司韓, 彭華, 等. 基于矢量圖的特定輻射源識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2020, 42(4): 941–949. doi: 10.11999/JEIT190329

    PAN Yiwei, YANG Sihan, PENG Hua, et al. Specific emitter identification using signal trajectory image[J]. Journal of Electronics &Information Technology, 2020, 42(4): 941–949. doi: 10.11999/JEIT190329
    LI Suyi, LIU Guangda, and LIN Zhenbao. Comparisons of wavelet packet, lifting wavelet and stationary wavelet transform for de-noising ECG[C]. The 2009 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, China, 2009: 491–494. doi: 10.1109/ICCSIT.2009.5234650.
    王勇, 鄒輝, 饒勤菲, 等. 結(jié)合空域噪聲信息的小波脊提取算法[J]. 電子科技大學(xué)學(xué)報(bào), 2018, 47(4): 613–620. doi: 10.3969/j.issn.1001-0548.2018.04.022

    WANG Yong, ZOU Hui, RAO Qinfei, et al. A wavelet ridge extraction algorithm combined with spatial noise information[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(4): 613–620. doi: 10.3969/j.issn.1001-0548.2018.04.022
    唐智靈. 通信輻射源非線性個(gè)體識(shí)別方法研究[D]. [博士論文], 西安電子科技大學(xué), 2013.

    TANG Zhiling. A study of nonlinear method for specific communications emitter identification[D]. [Ph. D. dissertation], Xidian University, 2013.
    WU Longwen, ZHAO Yaqin, WANG Zhao, et al. Specific emitter identification using fractal features based on box-counting dimension and variance dimension[C]. 2017 IEEE International Symposium on Signal Processing and Information Technology, Bilbao, Spain, 2017: 226–231. doi: 10.1109/ISSPIT.2017.8388646.
    BIHL T J, BAUER K W, and TEMPLE M A. Feature selection for RF fingerprinting with multiple discriminant analysis and using ZigBee device emissions[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(8): 1862–1874. doi: 10.1109/TIFS.2016.2561902
    WU Longwen, ZHAO Yaqin, FENG Mengfei, et al. Specific emitter identification using IMF-DNA with a joint feature selection algorithm[J]. Electronics, 2019, 8(9): 934. doi: 10.3390/electronics8090934
    CHEN Taowei, JIN Weidong, and LI Jie. Feature extraction using surrounding-line integral bispectrum for radar emitter signal[C]. 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China, 2008: 294–298. doi: 10.1109/IJCNN.2008.4633806.
  • 加載中
圖(5) / 表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  1882
  • HTML全文瀏覽量:  1457
  • PDF下載量:  70
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-08-28
  • 修回日期:  2020-05-05
  • 網(wǎng)絡(luò)出版日期:  2020-05-17
  • 刊出日期:  2020-08-18

目錄

    /

    返回文章
    返回