基于同步壓縮小波變換的主信號(hào)抑制技術(shù)
doi: 10.11999/JEIT190650 cstr: 32379.14.JEIT190650
-
1.
哈爾濱工業(yè)大學(xué)電子與信息工程學(xué)院 哈爾濱 150001
-
2.
中國(guó)電子科技集團(tuán)公司第二十九研究所 成都 610036
Primary Signal Suppression Based on Synchrosqueezed Wavelet Transform
-
1.
School of Electronics & Information Engineering, Harbin Institute of Technology, Harbin 150001, China
-
2.
The 29th Research Institute of China Electronics Technology Group Corporation, Chengdu 610036, China
-
摘要:
在輻射源個(gè)體識(shí)別(SEI)技術(shù)中,能量較高的主信號(hào)往往導(dǎo)致微弱個(gè)體特征穩(wěn)定性降低,進(jìn)而影響最終的個(gè)體識(shí)別效果。為了解決該問(wèn)題并提升輻射源個(gè)體識(shí)別性能,該文提出基于同步壓縮小波變換的主信號(hào)抑制技術(shù)。首先,利用靜態(tài)小波變換完成對(duì)帶噪信號(hào)的去噪預(yù)處理;然后,利用同步壓縮小波變換完成對(duì)主信號(hào)的檢測(cè)和抑制,并以均方根誤差和皮爾遜相關(guān)系數(shù)為數(shù)值指標(biāo),驗(yàn)證算法的有效性;最后,在主信號(hào)抑制的基礎(chǔ)上,利用分形理論中盒維數(shù)完成對(duì)信號(hào)的特征提取,并利用單核支持向量機(jī)驗(yàn)證個(gè)體識(shí)別性能。實(shí)驗(yàn)結(jié)果表明,與主信號(hào)抑制之前相比,主信號(hào)抑制算法下個(gè)體識(shí)別率提升了10%左右,驗(yàn)證了同步壓縮小波變換的主信號(hào)抑制算法對(duì)輻射源個(gè)體識(shí)別率提升的有效性。
-
關(guān)鍵詞:
- 輻射源個(gè)體識(shí)別 /
- 主信號(hào)抑制 /
- 同步壓縮小波變換 /
- 特征提取
Abstract:In Specific Emitter Identification (SEI), the stability of individual features and final correct identification rate are always declined due to the influence of the primary signal with high energy on the individual features. To solve the problem above, a primary signal suppression algorithm based on synchrosqueezed wavelet transform is exploited for specific emitter identification in this paper. Firstly, a denoising method based on stationary wavelet transform is applied to preprocess the noised signal; Then, the detection and suppression of the primary signal from time-frequency distribution are developed, where root mean square error and Pearson correlation coefficient are used as numerical indicators to measure the effectiveness of the proposed primary signal suppression algorithm; Finally, a feature extraction based on box-counting dimension and a classification based on support vector machine are exploited to verify the identification performance. The simulation results show that the correct identification rate of SEI using the proposed primary signal suppression outperforms the conventional SEI with 10%, which proves the practical improvement of the proposed primary signal suppression algorithm on specific emitter identification.
-
表 1 加性相位噪聲參數(shù)
輻射源個(gè)體 與頻偏對(duì)應(yīng)的相位噪聲幅度(信相噪比(dB)) f1=±2.75 MHz f2=±2.80 MHz f3=±3.10 MHz E1 11.9897 12.7815 15.7918 E2 10.4845 11.6722 16.1877 f21=±2.8 MHz f22=±2.9 MHz f23=±3.15 MHz E3 12.7815 14.0308 16.1394 下載: 導(dǎo)出CSV
表 2 實(shí)測(cè)數(shù)據(jù)特征結(jié)構(gòu)與來(lái)源
下載: 導(dǎo)出CSV
-
WANG Xuebao, HUANG Gaoming, ZHOU Zhiwen, et al. Radar emitter recognition based on the short time fourier transform and convolutional neural networks[C]. The 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, Shanghai, China, 2017: 1–5. doi: 10.1109/CISP-BMEI.2017.8302111. LIANG Kaiqiang, HUANG Zhen, HU Dexiu, et al. An individual emitter recognition method combining bispectrum with wavelet entropy[C]. 2015 IEEE International Conference on Progress in Informatics and Computing, Nanjing, China, 2015: 206–210. doi: 10.1109/PIC.2015.7489838. GUO Haizhao, ZHANG Xiaonu, YANG Libo, et al. Improved fisher linear discriminant analysis for feature extraction of unintentional modulation on pulse by combining ambiguity function with wavelet transform[C]. IET International Radar Conference 2015, Hangzhou, China, 2015: 1–4. doi: 10.1049/cp.2015.1108. LI Yibing, GE Juan, LIN Yun, et al. Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting[J]. Journal of Central South University, 2014, 21(11): 4254–4260. doi: 10.1007/s11771-014-2422-5 曹銀萍, 郭璐. 基于MATLAB的小波分析在信號(hào)去噪中的應(yīng)用[J]. 信息記錄材料, 2018, 19(7): 85–87. doi: 10.16009/j.cnki.cn13-1295/tq.2018.07.056CAO Yinping and GUO Lu. Application of wavelet analysis based on MATLAB in signal denoising[J]. Information Recording Materials, 2018, 19(7): 85–87. doi: 10.16009/j.cnki.cn13-1295/tq.2018.07.056 DUDCZYK J and KAWALEC A. Fractal features of specific emitter identification[J]. Acta Physica Polonica A, 2013, 124(2): 406–409. doi: 10.12693/APhysPolA.124.406 DUDCZYK J and KAWALEC A. Identification of emitter sources in the aspect of their fractal features[J]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61(3): 623–628. doi: 10.2478/bpasts-2013-0065 WU Xiaopo, SHI Yangming, MENG Weibo, et al. Specific emitter identification for satellite communication using probabilistic neural networks[J]. International Journal of Satellite Communications and Networking, 2019, 37(3): 283–291. doi: 10.1002/sat.1286 王歡歡, 張濤, 孟凡玉. 基于時(shí)頻域細(xì)微特征的輻射源個(gè)體識(shí)別[J]. 信息工程大學(xué)學(xué)報(bào), 2018, 19(1): 23–29. doi: 10.3969/j.issn.1671-0673.2018.01.006WANG Huanhuan, ZHANG Tao, and MENG Fanyu. Specific emitter identification based on time-frequency domain characteristic[J]. Journal of Information Engineering University, 2018, 19(1): 23–29. doi: 10.3969/j.issn.1671-0673.2018.01.006 WANG Huanhuan and ZHNAG Tao. Specific emitter identification based on fractal and wavelet theories[C]. The 2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 2017: 1613–1617. doi: 10.1109/IAEAC.2017.8054286. WANG Wei, LIU Hui, YANG Jun’an, et al. Specific emitter identification using decomposed hierarchical feature extraction methods[C]. The 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, Guilin, China, 2017: 1639–1643. doi: 10.1109/FSKD.2017.8393011. HE Boxiang, WANG Fanggang, LIU Yu, et al. Specific emitter identification via multiple distorted receivers[C]. 2019 IEEE International Conference on Communications Workshops, Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8757066. 潘一葦, 彭華, 李天昀, 等. 一種新的時(shí)分多址信號(hào)射頻特征及其在特定輻射源識(shí)別中的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2019, 41(11): 2661–2668. doi: 10.11999/JEIT190163PAN Yiwei, PENG Hua, LI Tianyun, et al. A novel radiometric signature of time-division multiple access signals and its application to specific emitter identification[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2661–2668. doi: 10.11999/JEIT190163 潘一葦, 楊司韓, 彭華, 等. 基于矢量圖的特定輻射源識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2020, 42(4): 941–949. doi: 10.11999/JEIT190329PAN Yiwei, YANG Sihan, PENG Hua, et al. Specific emitter identification using signal trajectory image[J]. Journal of Electronics &Information Technology, 2020, 42(4): 941–949. doi: 10.11999/JEIT190329 LI Suyi, LIU Guangda, and LIN Zhenbao. Comparisons of wavelet packet, lifting wavelet and stationary wavelet transform for de-noising ECG[C]. The 2009 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, China, 2009: 491–494. doi: 10.1109/ICCSIT.2009.5234650. 王勇, 鄒輝, 饒勤菲, 等. 結(jié)合空域噪聲信息的小波脊提取算法[J]. 電子科技大學(xué)學(xué)報(bào), 2018, 47(4): 613–620. doi: 10.3969/j.issn.1001-0548.2018.04.022WANG Yong, ZOU Hui, RAO Qinfei, et al. A wavelet ridge extraction algorithm combined with spatial noise information[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(4): 613–620. doi: 10.3969/j.issn.1001-0548.2018.04.022 唐智靈. 通信輻射源非線性個(gè)體識(shí)別方法研究[D]. [博士論文], 西安電子科技大學(xué), 2013.TANG Zhiling. A study of nonlinear method for specific communications emitter identification[D]. [Ph. D. dissertation], Xidian University, 2013. WU Longwen, ZHAO Yaqin, WANG Zhao, et al. Specific emitter identification using fractal features based on box-counting dimension and variance dimension[C]. 2017 IEEE International Symposium on Signal Processing and Information Technology, Bilbao, Spain, 2017: 226–231. doi: 10.1109/ISSPIT.2017.8388646. BIHL T J, BAUER K W, and TEMPLE M A. Feature selection for RF fingerprinting with multiple discriminant analysis and using ZigBee device emissions[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(8): 1862–1874. doi: 10.1109/TIFS.2016.2561902 WU Longwen, ZHAO Yaqin, FENG Mengfei, et al. Specific emitter identification using IMF-DNA with a joint feature selection algorithm[J]. Electronics, 2019, 8(9): 934. doi: 10.3390/electronics8090934 CHEN Taowei, JIN Weidong, and LI Jie. Feature extraction using surrounding-line integral bispectrum for radar emitter signal[C]. 2008 IEEE International Joint Conference on Neural Networks, Hong Kong, China, 2008: 294–298. doi: 10.1109/IJCNN.2008.4633806. -