橢圓球面函數(shù)頻域調(diào)制解調(diào)方法
doi: 10.11999/JEIT190642 cstr: 32379.14.JEIT190642
-
1.
海軍航空大學(xué) 煙臺(tái) 264001
-
2.
山東省信號(hào)與信息處理重點(diǎn)實(shí)驗(yàn)室 煙臺(tái) 264001
PSWFs Frequency Domain Modulation and Demodulation Method
-
1.
Naval Aviation University, Yantai 264001, China
-
2.
Key Laboratory on Signal & Information Processing of Shandong Provience, Yantai 264001, China
-
摘要:
針對(duì)基于橢圓球面波函數(shù)(PSWFs)的非正弦時(shí)域調(diào)制算法復(fù)雜度高的不足,該文引入空間映射,分析了PSWFs信號(hào)頻域完備正交性,推導(dǎo)出PSWFs信號(hào)頻域有效表示所需最小抽樣點(diǎn)數(shù)。在此基礎(chǔ)上,引入復(fù)數(shù)域映射、FFT/IFFT信號(hào)處理框架,提出PSWFs頻域調(diào)制解調(diào)方法。該方法將PSWFs信號(hào)處理由時(shí)域拓展到頻域,在頻域進(jìn)行信息加載與檢測(cè),為探索研究PSWFs信號(hào)在5G、超5G等采用頻域信號(hào)處理的通信系統(tǒng)中的應(yīng)用提供了可能。理論和數(shù)值分析表明,相對(duì)于PSWFs時(shí)域調(diào)制,所提方法將能夠在不改變系統(tǒng)頻帶利用率、系統(tǒng)誤碼性能、調(diào)制信號(hào)能量聚集性以及信號(hào)峰均功率比的前提下,顯著降低算法復(fù)雜度,將運(yùn)算復(fù)雜度由O(2Qg2)降低為O(g2+glog2g)。
-
關(guān)鍵詞:
- 橢圓球面波函數(shù) /
- 頻域調(diào)制 /
- FFT/IFFT框架 /
- 頻域抽樣
Abstract:In view of the problem of high complexity for non-sinusoidal time domain modulation algorithms based on Prolate Spheroidal Wave Functions (PSWFs), spatial mapping is introduced to analyze the complete orthogonality and derive the minimum number of sampling points of PSWFs in the frequency domain. On this basis, the complex domain mapping and FFT/IFFT signal processing framework are introduced, and the PSWFs frequency domain modulation and demodulation method are proposed. The proposed method extends PSWFs signal processing from time domain to frequency domain, providing a possibility for exploring and studying the application of PSWFs signal to 5G, beyond 5G which use frequency domain signal processing. Theory and numerical analysis show that, compared with the time domain modulation, the proposed method can reduces the complexity of the algorithm from O(2Qg2) to O(g2+glog2g) without changing the system spectral efficiency, system error performance, modulation signal energy aggregation, and peak-to-average power ratio.
-
表 1 仿真參數(shù)設(shè)置
參數(shù) 符號(hào) 數(shù)值 信號(hào)時(shí)間帶寬積 g 36 Hz·s 信號(hào)時(shí)寬 T 66.7 μs 信號(hào)頻帶范圍 [0 0.27] MHz 信號(hào)路數(shù)c-k k 1 時(shí)域抽樣點(diǎn)個(gè)數(shù) NT 1024 頻域總抽樣點(diǎn)個(gè)數(shù) NF g+1 增加抽樣點(diǎn)數(shù) NP 2 下載: 導(dǎo)出CSV
-
NISSEL R, SCHWARZ S, and RUPP M. Filter bank multicarrier modulation schemes for future mobile communications[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(8): 1768–1782. doi: 10.1109/JSAC.2017.2710022 SOLDANI D, GUO Y J, BARANI B, et al. 5G for ultra-reliable low-latency communications[J]. IEEE Network, 2018, 32(2): 6–7. doi: 10.1109/MNET.2018.8329617 黃容蘭, 劉云, 李啟尚, 等. 基于非正交多址接入中繼通信系統(tǒng)的功率優(yōu)化[J]. 電子與信息學(xué)報(bào), 2019, 41(8): 1909–1915. doi: 10.11999/JEIT180842HUANG Ronglan, LIU Yun, LI Qishang, et al. Power allocation optimization of cooperative relaying systems using non-orthogonal multiple access[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1909–1915. doi: 10.11999/JEIT180842 申濱, 吳和彪, 崔太平, 等. 基于最優(yōu)索引廣義正交匹配追蹤的非正交多址系統(tǒng)多用戶檢測(cè)[J]. 電子與信息學(xué)報(bào), 2020, 42(3): 621–628. doi: 10.11999/JEIT190270SHEN Bin, WU Hebiao, CUI Taiping, et al. An optimal number of indices aided gOMP algorithm for multi-user detection in NOMA system[J]. Journal of Electronics &Information Technology, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270 王汝言, 梁穎杰, 崔亞平. 車輛網(wǎng)絡(luò)多平臺(tái)卸載智能資源分配算法[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 263–270. doi: 10.11999/JEIT190074WANG Ruyan, LIANG Yingjie, and CUI Yaping. Intelligent resource allocation algorithm for multi-platform offloading in vehicular networks[J]. Journal of Electronics &Information Technology, 2020, 42(1): 263–270. doi: 10.11999/JEIT190074 IBRAHIM M, DEMIR A F, and ARSLAN H. Time-frequency warped waveforms[J]. IEEE Communications Letters, 2019, 23(1): 36–39. doi: 10.1109/LCOMM.2018.2882498 SLEPIAN D and POLLAK H O. Prolate spheroidal wave functions, Fourier analysis and uncertainty-I[J]. The Bell System Technical Journal, 1961, 20(1): 43–63. doi: 10.1002/j.1538-7305.1961.tb03976.x 王紅星, 陸發(fā)平, 劉傳輝, 等. 橢圓球面波信號(hào)間交叉項(xiàng)時(shí)頻分布特性研究[J]. 電子與信息學(xué)報(bào), 2017, 39(6): 1319–1325. doi: 10.11999/JEIT160877WANG Hongxing, LU Faping, LIU Chuanhui, et al. Study on time-frequency characteristics of cross-terms between prolate spheroidal wave function signal[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1319–1325. doi: 10.11999/JEIT160877 OSIPOV A, ROKHLIN V, and XIAO Hong. Prolate Spheroidal Wave Functions of Order Zero: Mathematical Tools for Bandlimited Approximation[M]. Boston: Springer, 2013: 33–66. doi: 10.1007/978-1-4614-8259-8. CHEN Zhaonan, WANG Hongxing, LIU Xiguo, et al. Maximal capacity nonorthogonal pulse shape modulation[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1699–1708. doi: 10.1016/j.cja.2015.09.008 SLEPIAN D. Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V: The discrete case[J]. The Bell System Technical Journal, 1978, 57(5): 1371–1430. doi: 10.1002/j.1538-7305.1978.tb02104.x SELINIS I, KATSAROS K, ALLAYIOTI M, et al. The race to 5G era; LTE and Wi-Fi[J]. IEEE Access, 2018, 6: 56598–56636. doi: 10.1109/ACCESS.2018.2867729 HAMMOODI A, AUDAH L, and TAHER M A. Green coexistence for 5G waveform candidates: A review[J]. IEEE Access, 2019, 7: 10103–10126. doi: 10.1109/ACCESS.2019.2891312 HARMUTH H F. Frequency-sharing and spread-spectrum transmission with large relative bandwidth[J]. IEEE Transactions on Electromagnetic Compatibility, 1978, EMC-20(1): 232–239. doi: 10.1109/TEMC.1978.303653 -