一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

改進(jìn)的Type-1型廣義Feistel結(jié)構(gòu)的量子攻擊及其在分組密碼CAST-256上的應(yīng)用

倪博煜 董曉陽

倪博煜, 董曉陽. 改進(jìn)的Type-1型廣義Feistel結(jié)構(gòu)的量子攻擊及其在分組密碼CAST-256上的應(yīng)用[J]. 電子與信息學(xué)報, 2020, 42(2): 295-306. doi: 10.11999/JEIT190633
引用本文: 倪博煜, 董曉陽. 改進(jìn)的Type-1型廣義Feistel結(jié)構(gòu)的量子攻擊及其在分組密碼CAST-256上的應(yīng)用[J]. 電子與信息學(xué)報, 2020, 42(2): 295-306. doi: 10.11999/JEIT190633
Boyu NI, Xiaoyang DONG. Improved Quantum Attack on Type-1 Generalized Feistel Schemes and Its Application to CAST-256[J]. Journal of Electronics & Information Technology, 2020, 42(2): 295-306. doi: 10.11999/JEIT190633
Citation: Boyu NI, Xiaoyang DONG. Improved Quantum Attack on Type-1 Generalized Feistel Schemes and Its Application to CAST-256[J]. Journal of Electronics & Information Technology, 2020, 42(2): 295-306. doi: 10.11999/JEIT190633

改進(jìn)的Type-1型廣義Feistel結(jié)構(gòu)的量子攻擊及其在分組密碼CAST-256上的應(yīng)用

doi: 10.11999/JEIT190633 cstr: 32379.14.JEIT190633
基金項目: 國家重點研發(fā)計劃(2017YFA0303903),國家自然科學(xué)基金(61902207),國家密碼發(fā)展基金(MMJJ20180101, MMJJ20170121)
詳細(xì)信息
    作者簡介:

    董曉陽:男,1988年生,助理研究員。研究方向為對稱密碼算法的安全性分析與設(shè)計

    通訊作者:

    董曉陽 xiaoyangdong@tsinghua.edu.cn

  • 中圖分類號: TN918; TP309

Improved Quantum Attack on Type-1 Generalized Feistel Schemes and Its Application to CAST-256

Funds: The National Key Research and Development Program of China (2017YFA0303903), The National Natural Science Foundation of China (61902207), The National Cryptography Development Fund (MMJJ20180101, MMJJ20170121)
  • 摘要: 廣義Feistel結(jié)構(gòu)(GFS)是設(shè)計對稱密碼算法的重要基礎(chǔ)結(jié)構(gòu)之一,其在經(jīng)典計算環(huán)境中受到了廣泛的研究。但是,量子計算環(huán)境下對GFS的安全性評估還相當(dāng)稀少。該文在量子選擇明文攻擊(qCPA)條件下和量子選擇密文攻擊(qCCA)條件下,分別對Type-1 GFS進(jìn)行研究,給出了改進(jìn)的多項式時間量子區(qū)分器。在qCPA條件下,給出了3d – 3輪的多項式時間量子區(qū)分攻擊,其中$d(d \ge 3)$是Type-1 GFS的分支數(shù),攻擊輪數(shù)較之前最優(yōu)結(jié)果增加$d - 2$輪。得到更好的量子密鑰恢復(fù)攻擊,即相同輪數(shù)下攻擊的時間復(fù)雜度降低了${2^{(d - 2)n/2}}$。在qCCA條件下,對于Type-1 GFS給出了$3d - 2$輪的多項式時間量子區(qū)分攻擊,比之前最優(yōu)結(jié)果增加了$d - 1$輪。該文將上述區(qū)分攻擊應(yīng)用到CAST-256分組密碼中,得到了12輪qCPA多項式時間量子區(qū)分器,以及13輪qCCA多項式時間量子區(qū)分器,該文給出19輪CAST-256的量子密鑰恢復(fù)攻擊。
  • 圖  1  3輪的量子區(qū)分器

    圖  2  FX結(jié)構(gòu)

    圖  3  Ito等人在Feistel上的4輪量子區(qū)分器

    圖  4  $d$分支Type-1 GFS的第$i$

    圖  5  4分支Type-1 GFS的選擇明文量子區(qū)分器

    圖  6  4分支Type-1 GFS的16輪密鑰恢復(fù)攻擊

    圖  7  4分支CAST256-like GFS的10輪區(qū)分器

    圖  8  CAST-256的12輪區(qū)分器

    圖  9  CAST-256的14輪攻擊

    圖  10  CAST-256的13輪區(qū)分器

    表  1  Type-1 GFS的量子區(qū)分器的輪數(shù)

    來源攻擊條件$r$$d = 3$$d = 4$$d = 5$$d = 6$$d = 7$
    文獻(xiàn)[35]qCPA2d–15791113
    4.1節(jié)qCPA3d–369121518
    4.2節(jié)qCCA3d–2710131619
    下載: 導(dǎo)出CSV

    表  2  在量子環(huán)境下對Type-1 GFS的密鑰恢復(fù)攻擊

    來源區(qū)分器輪數(shù)密鑰恢復(fù)輪數(shù)復(fù)雜度(log)窮搜復(fù)雜度(log)
    文獻(xiàn)[35]$2d - 1$$r \ge {d^2}$$T + ({{r - {d^2} + d - 2)n} / 2}$ ${{rn} / 2}$
    4.1節(jié)$3d - 3$$r \ge {d^2}$$T + ({{r - {d^2})n} / 2}$${{rn} / 2}$
    下載: 導(dǎo)出CSV

    表  3  CAST-256的量子攻擊

    來源攻擊條件區(qū)分器輪數(shù)密鑰恢復(fù)攻擊輪數(shù)
    $r = 14$$r = 15$$r = 16$$r = 17$$r = 18$$r = 19$
    文獻(xiàn)[35]qCPA7${2^{74}}$${2^{92.5}}$${2^{111}}$$ - $$ - $$ - $
    5.1節(jié)qCPA12${2^{37}}$${2^{55.5}}$${2^{74}}$${2^{92.5}}$${2^{111}}$$ - $
    5.2節(jié)qCCA13${2^{18.5}}$${2^{37}}$${2^{55.5}}$${2^{74}}$${2^{92.5}}$${2^{111}}$
    下載: 導(dǎo)出CSV

    表  4  針對CAST-256的經(jīng)典攻擊和量子攻擊的比較

    來源密鑰長度攻擊輪數(shù)數(shù)據(jù)時間
    文獻(xiàn)[39]128飛去來器16${2^{49.3}}$$ - $
    5.2節(jié)128qCCA16$ {2^{55.5}} $
    文獻(xiàn)[40]192線性攻擊24${2^{124.1}}$$ {2^{156.52}} $
    5.2節(jié)192qCCA17$ {2^{74}}$
    文獻(xiàn)[41]256多維零相關(guān)28${2^{98.8}}$$ {2^{246.9}} $
    5.2節(jié)256qCCA19$ {2^{111}} $
    下載: 導(dǎo)出CSV
  • KNUDSEN L R. The security of Feistel ciphers with six rounds or less[J]. Journal of Cryptology, 2002, 15(3): 207–222. doi: 10.1007/s00145-002-9839-y
    ISOBE T and SHIBUTANI K. Generic key recovery attack on Feistel scheme[C]. The 19th International Conference on the Theory and Application of Cryptology and Information Security, Bengaluru, India, 2013: 464–485.
    GUO Jian, JEAN J, NIKOLI? I, et al. Meet-in-the-middle attacks on generic Feistel constructions[C]. The 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, China, 2014: 458–477.
    DINUR I, DUNKELMAN O, KELLER N, et al. New attacks on Feistel structures with improved memory complexities[C]. The 35th Annual Cryptology Conference, Santa Barbara, USA, 2015: 433–454.
    AOKI K, ICHIKAWA T, KANDA M, et al. Camellia: A 128-bit Block Cipher Suitable for Multiple Platforms - Design and Analysis[M]. Berlin, Heidelberg: Springer, 2001: 39–56.
    National Soviet Bureau of Standards. GOST 28147-89 Information processing systems. cryptographic protection cryptographic transformation algorithm[S]. 1989.
    ZHENG Yuliang, MATSUMOTO T, and IMAI H. On the construction of block ciphers provably secure and not relying on any unproved hypotheses[C]. Conference on the Theory and Application of Cryptology, Santa Barbara, USA, 1990: 461–480.
    ANDERSON R and BIHAM E. Two practical and provably secure block ciphers: BEAR and LION[C]. The 3rd International Workshop on Fast Software Encryption, Cambridge, UK, 1996: 113–120.
    LUCKS S. Faster luby-rackoff ciphers[C]. The 3rd International Workshop on Fast Software Encryption, Cambridge, UK, 1996: 189–203.
    SCHNEIER B and KELSEY J. Unbalanced Feistel networks and block cipher design[C]. The 3rd International Workshop on Fast Software Encryption, Cambridge, UK, 1996: 121–144.
    First AES Candidate Conference[EB/OL]. http://csrc.nist.gov/archive/aes/round1/conf1/aes1conf.htm.
    SHIRAI T, SHIBUTANI K, AKISHITA T, et al. The 128-bit blockcipher CLEFIA (extended abstract)[C]. The 14th International Workshop on Fast Software Encryption, Luxembourg, Luxembourg, 2007: 181–195.
    GUERON S and MOUHA N. Simpira v2: A family of efficient permutations using the AES round function[C]. The 22nd International Conference on the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam, 2016: 95–125.
    LUBY M and RACKOFF C. How to construct pseudorandom permutations from pseudorandom functions[J]. SIAM Journal on Computing, 1988, 17(2): 373–386. doi: 10.1137/0217022
    MORIAI S and VAUDENAY S. On the pseudorandomness of top-level schemes of block ciphers[C]. The 6th International Conference on the Theory and Application of Cryptology and Information Security, Kyoto, Japan, 2000: 289–302.
    HOANG V T and ROGAWAY P. On generalized Feistel networks[C]. The 30th Annual Cryptology Conference, Santa Barbara, USA, 2010: 613–630.
    JUTLA C S. Generalized birthday attacks on unbalanced Feistel networks[C]. The 18th Annual International Cryptology Conference, Santa Barbara, USA, 1998: 186–199.
    GUO Jian, JEAN J, NIKOLIC I, et al. Meet-in-the-middle attacks on classes of contracting and expanding Feistel constructions[J]. IACR Transactions on Symmetric Cryptology, 2016(2): 307–337.
    NACHEF V, VOLTE E, and PATARIN J. Differential attacks on generalized Feistel schemes[C]. The 12th International Conference on Cryptology and Network Security, Paraty, Brazil, 2013: 1–19.
    TJUAWINATA I, HUANG Tao, and WU Hongjun. Improved differential cryptanalysis on generalized Feistel schemes[C]. The 18th International Conference on Cryptology in India, Chennai, India, 2017: 302–324.
    PATARIN J, NACHEF V, and BERBAIN C. Generic attacks on unbalanced Feistel schemes with contracting functions[C]. The 12th International Conference on the Theory and Application of Cryptology and Information Security, Shanghai, China, 2006: 396–411.
    PATARIN J, NACHEF V, and BERBAIN C. Generic attacks on unbalanced Feistel schemes with expanding functions[C]. The 13th International Conference on the Theory and Application of Cryptology and Information Security, Kuching, Malaysia, 2007: 325–341.
    VOLTE E, NACHEF V, and PATARIN J. Improved generic attacks on unbalanced Feistel schemes with expanding functions[C]. The 16th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, 2010: 94–111.
    GROVER L K. A fast quantum mechanical algorithm for database search[C]. The 28th Annual ACM Symposium on Theory of Computing, Philadelphia, USA, 1996: 212–219.
    KUWAKADO H and MORII M. Quantum distinguisher between the 3-round Feistel cipher and the random permutation[C]. IEEE International Symposium on Information Theory, Austin, USA, 2010: 2682–2685.
    SIMON D R. On the power of quantum computation[J]. SIAM Journal on Computing, 1997, 26(5): 1474–1483. doi: 10.1137/S0097539796298637
    KUWAKADO H and MORII M. Security on the quantum-type even-mansour cipher[C]. 2012 International Symposium on Information Theory and its Applications, Honolulu, USA, 2012: 312–316.
    KAPLAN M, LEURENT G, LEVERRIER A, et al. Breaking symmetric cryptosystems using quantum period finding[C]. The 36th Annual International Cryptology Conference, Santa Barbara, USA, 2016: 207–237.
    BONNETAIN X. Quantum key-recovery on full AEZ[C]. The 24th International Conference on Selected Areas in Cryptography, Ottawa, Canada, 2018: 394–406.
    LEANDER G and MAY A. Grover meets simon - quantumly attacking the FX-construction[C]. The 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, 2017: 161–178.
    ZHANDRY M. How to construct quantum random functions[C]. The 53rd IEEE Annual Symposium on Foundations of Computer Science, New Brunswick, USA, 2012: 679–687.
    ITO G, HOSOYAMADA A, MATSUMOTO R, et al. Quantum chosen-ciphertext attacks against Feistel ciphers[C]. The Cryptographers' Track at the RSA Conference, San Francisco, USA, 2019: 391–411.
    HOSOYAMADA A and SASAKI Y. Quantum demiric-sel?uk meet-in-the-middle attacks: Applications to 6-round generic Feistel constructions[C]. The 11th International Conference on Security and Cryptography for Networks, Amalfi, Italy, 2018: 386–403.
    DONG Xiaoyang and WANG Xiaoyun. Quantum key-recovery attack on Feistel structures[J]. Science China Information Sciences, 2018, 61(10): 102501. doi: 10.1007/s11432-017-9468-y
    DONG Xiaoyang, LI Zheng, and WANG Xiaoyun. Quantum cryptanalysis on some generalized Feistel schemes[J]. Science China Information Sciences, 2019, 62(2): 22501. doi: 10.1007/s11432-017-9436-7
    DONG Xiaoyang, DONG Bingyou, and WANG Xiaoyun. Quantum attacks on some Feistel block ciphers[R]. Cryptology ePrint Archive, Report 2018/504, 2018.
    BONNETAIN X, NAYA-PLASENCIA M, and SCHROTTENLOHER A. On quantum slide attacks[R]. Cryptology ePrint Archive, Report 2018/1067, 2018.
    HOSOYAMADA A and IWATA T. Tight quantum security bound of the 4-round luby-rackoff construction[R]. Cryptology ePrint Archive, Report 2019/243, 2019.
    WAGNER D. The boomerang attack[C]. The 6th International Workshop on Fast Software Encryption, Rome, Italy, 1999: 156–170.
    WANG Meiqin, WANG Xiaoyun, and HU Changhui. New linear cryptanalytic results of reduced-round of CAST-128 and CAST-256[C]. The 15th International Workshop on Selected Areas in Cryptography, Sackville, Canada, 2009: 429–441.
    BOGDANOV A, LEANDER G, NYBERG K, et al. Integral and multidimensional linear distinguishers with correlation zero[C]. The 18th International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China, 2012: 244–261.
  • 加載中
圖(10) / 表(4)
計量
  • 文章訪問數(shù):  3535
  • HTML全文瀏覽量:  1083
  • PDF下載量:  152
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-08-26
  • 修回日期:  2019-11-26
  • 網(wǎng)絡(luò)出版日期:  2019-11-29
  • 刊出日期:  2020-02-19

目錄

    /

    返回文章
    返回