一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于非線性降維的自然計算方法

季偉東 孫小晴 林平 羅強 徐浩天

季偉東, 孫小晴, 林平, 羅強, 徐浩天. 基于非線性降維的自然計算方法[J]. 電子與信息學(xué)報, 2020, 42(8): 1982-1989. doi: 10.11999/JEIT190623
引用本文: 季偉東, 孫小晴, 林平, 羅強, 徐浩天. 基于非線性降維的自然計算方法[J]. 電子與信息學(xué)報, 2020, 42(8): 1982-1989. doi: 10.11999/JEIT190623
Weidong JI, Xiaoqing SUN, Ping LIN, Qiang LUO, Haotian XU. Natural Computing Method Based on Nonlinear Dimension Reduction[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1982-1989. doi: 10.11999/JEIT190623
Citation: Weidong JI, Xiaoqing SUN, Ping LIN, Qiang LUO, Haotian XU. Natural Computing Method Based on Nonlinear Dimension Reduction[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1982-1989. doi: 10.11999/JEIT190623

基于非線性降維的自然計算方法

doi: 10.11999/JEIT190623 cstr: 32379.14.JEIT190623
基金項目: 國家自然科學(xué)基金(31971015),哈爾濱市科技局科技創(chuàng)新人才研究專項資助(2017RAQXJ050),哈爾濱師范大學(xué)碩士研究生學(xué)術(shù)創(chuàng)新基金(HSDSSCX2019-08)
詳細信息
    作者簡介:

    季偉東:男,1978年生,教授,研究方向為人工智能和大數(shù)據(jù)

    孫小晴:女,1994年生,碩士生,研究方向為群體智能和人工智能

    林平:男,1962年生,研究方向為應(yīng)用心理學(xué)和醫(yī)學(xué)人工智能

    羅強:男,1992年生,碩士生,研究方向為機器學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)

    徐浩天:男,1996年生,碩士生,研究方向為群體智能和人工智能

    通訊作者:

    孫小晴 sunxiaoqing2649@163.com

  • 中圖分類號: TP301.6

Natural Computing Method Based on Nonlinear Dimension Reduction

Funds: The National Natural Science Foundation of China (31971015), Harbin Science and Technology Bureau’s Special Subsidy for Scientific and Technological Innovation Talents Research (2017RAQXJ050), Harbin Normal University Master’s Academic Innovation Fund (HSDSSCX2019-08)
  • 摘要:

    隨著人工智能的發(fā)展,許多優(yōu)化問題發(fā)展為高維的大規(guī)模優(yōu)化問題。在自然計算方法中,針對高維問題雖然能避免算法陷入局部最優(yōu),但是在收斂速度和時間可行性上卻不占優(yōu)勢。該文在傳統(tǒng)自然計算方法的基礎(chǔ)上,提出了非線性降維的自然計算方法(NDR),該策略不依賴具體的算法,具有普適性。該方法將初始化的N個個體看做一個ND列的矩陣,然后對矩陣的列向量求最大線性無關(guān)組,從而減少矩陣的冗余度,達到降低維度的目的。在此過程中,由于剩余的任意列向量組均可由最大線性無關(guān)組表示,所以通過對最大線性無關(guān)組施加一個隨機系數(shù)來維持種群的多樣性和完整性。將該文所提策略分別應(yīng)用到標(biāo)準(zhǔn)遺傳算法(GA)和粒子群優(yōu)化算法(PSO)中,并與標(biāo)準(zhǔn)粒子群算法、遺傳算法以及目前主流的對維數(shù)進行優(yōu)化的4個算法對比,實驗證明,改進的算法對大部分標(biāo)準(zhǔn)測試函數(shù)都具有很強的全局收斂能力,其尋優(yōu)能力超過了上述6個算法,同時改進后的算法在運行時間上遠優(yōu)于對比算法。

  • 圖  1  各算法對標(biāo)準(zhǔn)測試函數(shù)進行優(yōu)化的收斂曲線

    圖  2  ${F_8}$的2維圖像

    圖  3  PSO和NDRPSO仿真時間對比

    圖  4  GA和NDRGA仿真時間對比

    表  1  非線性降維的自然計算方法(NDR)

     種群規(guī)模為N,終止進化代數(shù)為G,測試次數(shù)為T
     (1) 初始化N, G, T 等參數(shù),隨機產(chǎn)生第1代種群$\bf{pop}$;
     (2) 將生成的種群$\bf{pop}$做線性變換,求得列向量的最大線性無關(guān)
       組,即為新的種群$\bf{newpop}$;
     (3) 對新種群$\bf{newpop}$的各維乘以隨機系數(shù)${r_i}$,更新$\bf{newpop}$;
     (4) 將得到的$\bf{newpop}$使用基于種群的自然計算方法進化;
     (5) 結(jié)束。
    下載: 導(dǎo)出CSV

    表  2  標(biāo)準(zhǔn)測試函數(shù)

    測試函數(shù)維數(shù)可行解空間
    ${F_1} = \displaystyle\sum\nolimits_{i = 1}^D { {x_i}^2} $1000[–100, 100]n
    ${F_2} = {\left( { {x_1} - 1} \right)^2} + {\displaystyle\sum\nolimits_{i = 1}^D {i\cdot \left( {2{x_i}^2 - {x_{i - 1} } } \right)} ^2}$1000[–10, 10]n
    ${F_3} = \displaystyle\sum\nolimits_{i = 1}^D { { {\left| { {x_i} } \right|}^{i + 1} } }$1000[–1, 1]n
    $\begin{array}{l}{F_4} = - a\cdot\exp \left( { - b\sqrt {\dfrac{1}{D}\displaystyle\sum\nolimits_{i = 1}^D { {x_i}^2} } } \right) - \exp \left( {\dfrac{1}{D}\displaystyle\sum\nolimits_{i = 1}^D {\cos \left( {c{x_i} } \right)} } \right) + a + \exp \left( 1 \right), a = 20,b = 0.2,c = 2\pi \end{array}$1000[–32.768, 32.768]n
    ${F_5} = \displaystyle\sum\nolimits_{i = 1}^D {({x_i}^2 - 10 \cos (2 \pi {x_i})} + 10)$1000[–5.12, 5.12]n
    ${F_6} = \displaystyle\sum\limits_{i = 1}^D {\frac{ { {x_i}^2} }{ {4000} } - \prod\limits_{i = 1}^D {\cos \left( {\frac{ { {x_i} } }{ {\sqrt i } } } \right)} } + 1$1000[–600,600]n
    $\begin{array}{l}{F_7} = {\sin ^2}\left( {\pi {\omega _1} } \right) + {\displaystyle\sum\nolimits_{i = 1}^{D - 1} {\left( { {\omega _i} - 1} \right)} ^2}\left[ {1 + 10{ {\sin }^2}\left( {\pi {\omega _i} + 1} \right)} \right]\\ \quad\ \ + {\left( { {\omega _D} - 1} \right)^2}\left[ {1 + { {\sin }^2}\left( {2\pi {\omega _D} } \right)} \right]{\omega _i} = 1 + \dfrac{ { {\omega _i} - 1} }{4}\end{array}$1000[–10, 10]n
    ${F_8} = 418.9829D - \displaystyle\sum\nolimits_{i = 1}^D { {x_i}\sin \left( {\sqrt {\left| { {x_i} } \right|} } \right)}$1000[–500, 500]n
    ${F_9} = \displaystyle\sum\nolimits_{i = 1}^{D - 1} {\left[ {100{ {\left( { {x_{i + 1} } - x_i^2} \right)}^2} + { {\left( { {x_i} - 1} \right)}^2} } \right]} $1000[–5, 10]n
    ${F_{10} } = \displaystyle\sum\nolimits_{i = 1}^{D/4} {\left[ { { {\left( { {x_{4i - 3} } + 10{x_{4i - 2} } } \right)}^2} + 5{ {\left( { {x_{4i - 1} } - {x_{4i} } } \right)}^2} + { {\left( { {x_{4i - 2} } - 2{x_{4i - 1} } } \right)}^4} + 10{ {\left( { {x_{4i - 3} } - {x_{4i} } } \right)}^4} } \right]} $1000[–4, 5]n
    ${F_{11} }{\rm{ = } }\displaystyle\sum\nolimits_{i = 1}^D {ix_i^2} $1000[–10, 10]n
    ${F_{12} } = \displaystyle\sum\nolimits_{i = 1}^D {x_i^2 + { {\left( {\displaystyle\sum\nolimits_{i = 1}^D {0.5i{x_i} } } \right)}^2} + { {\left( {\displaystyle\sum\nolimits_{i = 1}^D {0.5i{x_i} } } \right)}^4} } $1000[–5, 10]n
    下載: 導(dǎo)出CSV

    表  3  各算法對12個標(biāo)準(zhǔn)測試函數(shù)進行優(yōu)化結(jié)果

    函數(shù)平均結(jié)果及標(biāo)準(zhǔn)方差
    PSONDRPSOGANDRGA
    F14.92e+05±5.09e+04345.2211±96.78911.78e+05±6.12e+0312.7059±3.2681
    F21.18e+08±2.47e+07301.8188±114.05393.65e+07±1.85e+063.8379±2.8421
    F36.71e-08±7.10e-086.48e-09±8.88e-091.11e-07±1.84e-073.17e-08±4.51e-08
    F417.1198±0.51857.0752±0.741713.2492±0.13235.2058±0.5977
    F59.72e+03±464.6314115.6225±21.71669.68e+03±86.5390104.5187±18.5246
    F64.34e+03±366.17413.6991±0.77141.61e+03±64.09151.4019±0.1196
    F71.66e+04±1.45e+0313.0269±5.81308.62e+03±366.16710.4960±0.1577
    F83.47e+05±7.50e+039.58e+03±866.12303.70e+05±2.42e+039.92e+03±619.0421
    F99.20e+06±2.18e+06694.6303±588.98503.48e+06±2.40e+05103.1690±45.9190
    F101.16e+05±1.50e+0414.2205±5.10532.48e+04±1.50e+030.3623±0.2182
    F112.82e+06±2.62e+0580.1161±31.82987.96e+05±2.70e+042.8521±1.2240
    F121.31e+04±3.41e+0353.57±12.842.18e+19±3.03e+0927.9986±12.1954
    下載: 導(dǎo)出CSV

    表  4  各算法的實驗對比結(jié)果

    ${F_1}$${F_3}$${F_4}$${F_5}$${F_6}$${F_8}$
    DMS-CCbest13.25.88e+051.60e+142.30e+062.20e+042.00e+11
    SLPSObest4.78e-143.82e+061.90e+145.15e+099.42e+06
    DMS-PSObest1.66e+011.14e+084.36e+071.68e+099.23e+044.51e+10
    CSObest2.43e-093.71e+064.61e+143.25e+099.68e+062.13e+11
    NDRPSObest6.541.11e-082.8912.910.882.02e+03
    下載: 導(dǎo)出CSV
  • DE CASTRO L N. Fundamentals of natural computing: An overview[J]. Physics of Life Reviews, 2007, 4(1): 1–36. doi: 10.1016/j.plrev.2006.10.002
    劉鑫, 李大海. 基于遺傳算法的相位差異技術(shù)圖像恢復(fù)[J]. 四川大學(xué)學(xué)報: 自然科學(xué)版, 2018, 55(4): 745–751. doi: 10.3969/j.issn.0490-6756.2018.04.015

    LIU Xin and LI Dahai. Recovering image using a genetic algorithm based phase diversity technology[J]. Journal of Sichuan University:Natural Science Edition, 2018, 55(4): 745–751. doi: 10.3969/j.issn.0490-6756.2018.04.015
    魏鵬, 羅紅波, 趙康, 等. 基于蟻群算法的運動時間優(yōu)化算法研究[J]. 四川大學(xué)學(xué)報: 自然科學(xué)版, 2018, 55(6): 1171–1179. doi: 10.3969/j.issn.0490-6756.2018.06.008

    WEI Peng, LUO Hongbo, ZHAO Kang, et al. Optimization of multi-joint robot motion of hydraulic drilling vehicle based on ant colony algorithm[J]. Journal of Sichuan University:Natural Science Edition, 2018, 55(6): 1171–1179. doi: 10.3969/j.issn.0490-6756.2018.06.008
    鄧昌明, 李晨, 鄧可君, 等. 基因遺傳算法在文本情感分類中的應(yīng)用[J]. 四川大學(xué)學(xué)報: 自然科學(xué)版, 2019, 56(1): 45–49. doi: 10.3969/j.issn.0490-6756.2019.01.010

    DENG Changming, LI Chen, DENG Kejun, et al. Application of genetic algorithm in text sentiment classification[J]. Journal of Sichuan University:Natural Science Edition, 2019, 56(1): 45–49. doi: 10.3969/j.issn.0490-6756.2019.01.010
    王蓉芳, 焦李成, 劉芳, 等. 自適應(yīng)動態(tài)控制種群規(guī)模的自然計算方法[J]. 軟件學(xué)報, 2012, 23(7): 1760–1772. doi: 10.3724/SP.J.1001.2012.04151

    WANG Rongfang, JIAO Licheng, LIU Fang, et al. Nature computation with self-adaptive dynamic control strategy of population size[J]. Journal of Software, 2012, 23(7): 1760–1772. doi: 10.3724/SP.J.1001.2012.04151
    SUN Wei, LIN Anping, YU Hongshan, et al. All-dimension neighborhood based particle swarm optimization with randomly selected neighbors[J]. Information Sciences, 2017, 405: 141–156. doi: 10.1016/j.ins.2017.04.007
    劉云, 易松. 雙變換算法在多維序列數(shù)據(jù)分析中的優(yōu)化研究[J]. 四川大學(xué)學(xué)報: 自然科學(xué)版, 2019, 56(4): 633–638. doi: 10.3969/j.issn.0490-6756.2019.04.009

    LIU Yu and YI Song. Research on optimization of double transform algorithm in multidimensional sequence data analysis[J]. Journal of Sichuan University:Natural Science Edition, 2019, 56(4): 633–638. doi: 10.3969/j.issn.0490-6756.2019.04.009
    賀毅朝, 王熙照, 張新祿, 等. 基于離散差分演化的KPC問題降維建模與求解[J]. 計算機學(xué)報, 2019, 42(10): 267–2280.

    HE Yichao, WANG Xizhao, ZHANG Xinlu, et al. Modeling and solving by dimensionality reduction of kpc problem based on discrete differential evolution[J]. Chinese Journal of Computers, 2019, 42(10): 267–2280.
    WANG Xuesong, KONG Yi, CHENG Yuhu, et al. Dimensionality reduction for hyperspectral data based on sample-dependent repulsion graph regularized auto-encoder[J]. Chinese Journal of Electronics, 2017, 26(6): 1233–1238. doi: 10.1049/cje.2017.07.012
    XU Guiping, CUI Quanlong, SHI Xiaohu, et al. Particle swarm optimization based on dimensional learning strategy[J]. Swarm and Evolutionary Computation, 2019, 45: 33–51. doi: 10.1016/j.swevo.2018.12.009
    WEI Jingxuan and WANG Yuping. A dynamical particle swarm algorithm with dimension mutation[C]. 2006 International Conference on Computational Intelligence and Security, Guangzhou, China, 2006: 254–257. doi: 10.1109/ICCIAS.2006.294131.
    紀(jì)震, 周家銳, 廖惠蓮, 等. 智能單粒子優(yōu)化算法[J]. 計算機學(xué)報, 2010, 33(3): 556–561. doi: 10.3724/SP.J.1016.2010.00556

    JI Zhen, ZHOU Jiarui, LIAO Huilian, et al. A novel intelligent single particle optimizer[J]. Chinese Journal of Computers, 2010, 33(3): 556–561. doi: 10.3724/SP.J.1016.2010.00556
    拓守恒, 鄧方安, 周濤. 一種利用膜計算求解高維函數(shù)的全局優(yōu)化算法[J]. 計算機工程與應(yīng)用, 2011, 47(19): 27–30. doi: 10.3778/j.issn.1002-8331.2011.19.009

    TUO Shouheng, DENG Fang’an, and ZHOU Tao. Algorithm for solving global optimization problems of multi-dimensional function based on membrane computing[J]. Computer Engineering and Applications, 2011, 47(19): 27–30. doi: 10.3778/j.issn.1002-8331.2011.19.009
    CERVANTE L, XUE Bing, SHANG Lin, et al. A dimension reduction approach to classification based on particle swarm optimisation and rough set theory[C]. The 25th Australasian Joint Conference on Artificial Intelligence, Sydney, Australia, 2012: 313–325.
    拓守恒. 一種基于人工蜂群的高維非線性優(yōu)化算法[J]. 微電子學(xué)與計算機, 2012, 29(7): 42–46. doi: 10.19304/j.cnki.issn1000-7180.2012.07.010

    TUO Shouheng. A new high-dimensional nonlinear optimization algorithm based on artificial bee colony[J]. Microelectronics &Computer, 2012, 29(7): 42–46. doi: 10.19304/j.cnki.issn1000-7180.2012.07.010
    JIN Xin, LIANG Yongquan, TIAN Dongping, et al. Particle swarm optimization using dimension selection methods[J]. Applied Mathematics and Computation, 2013, 219(10): 5185–5197. doi: 10.1016/j.amc.2012.11.020
    梁靜, 劉睿, 于坤杰, 等. 求解大規(guī)模問題協(xié)同進化動態(tài)粒子群優(yōu)化算法[J]. 軟件學(xué)報, 2018, 29(9): 2595–2605. doi: 10.13328/j.cnki.jos.005398

    LIANG Jing, LIU Run, YU Kunjie, et al. Dynamic multi-swarm particle swarm optimization with cooperative coevolution for large scale global optimization[J]. Journal of Software, 2018, 29(9): 2595–2605. doi: 10.13328/j.cnki.jos.005398
    YANG Chenghong, YANG Huaishuo, CHUANG L, et al. PBMDR: A particle swarm optimization-based multifactor dimensionality reduction for the detection of multilocus interactions[J]. Journal of Theoretical Biology, 2019, 461: 68–75. doi: 10.1016/j.jtbi.2018.10.012
    宋丹, 石勇, 鄧宸偉. 一種結(jié)合PCA與信息熵的SIFT特征向量自適應(yīng)降維算法[J]. 小型微型計算機系統(tǒng), 2017, 38(7): 1636–1641. doi: 10.3969/j.issn.1000-1220.2017.07.039

    SONG Dan, SHI Yong, DENG Chenwei, et al. Self -adaptive descending dimension algorithm of sift feature vector combined with PCA and information entropy[J]. Journal of Chinese Computer Systems, 2017, 38(7): 1636–1641. doi: 10.3969/j.issn.1000-1220.2017.07.039
    CHEN Sibao, DING C H O, and LUO Bin. Linear regression based projections for dimensionality reduction[J]. Information Sciences, 2018, 467: 74–86. doi: 10.1016/j.ins.2018.07.066
    ARIYARATNE M K A, FERNANDO T G I, and WEERAKOON S. Solving systems of nonlinear equations using a modified firefly algorithm (MODFA)[J]. Swarm and Evolutionary Computation, 2019, 48: 72–92. doi: 10.1016/j.swevo.2019.03.010
    劉振燾, 徐建平, 吳敏, 等. 語音情感特征提取及其降維方法綜述[J]. 計算機學(xué)報, 2018, 41(12): 2833–2851. doi: 10.11897/SP.J.1016.2018.02833

    LIU Zhentao, XU Jianping, WU Min, et al. Review of emotional feature extraction and dimension reduction method for speech emotion recognition[J]. Chinese Journal of Computers, 2018, 41(12): 2833–2851. doi: 10.11897/SP.J.1016.2018.02833
    孟凡超, 初佃輝, 李克秋, 等. 基于混合遺傳模擬退火算法的SaaS構(gòu)件優(yōu)化放置[J]. 軟件學(xué)報, 2016, 27(4): 916–932. doi: 10.13328/j.cnki.jos.004965

    MENG Fanchao, CHU Dianhui, LI Keqiu, et al. Solving SaaS components optimization placement problem with hybird genetic and simulated annealing algorithm[J]. Journal of Software, 2016, 27(4): 916–932. doi: 10.13328/j.cnki.jos.004965
    KENNEDY J and EBERHART E. Particle swarm optimization[C]. 1995 International Conference on Neural Networks, Perth, Australia, 1995: 1942–1948.
    CHENG Ran and JIN Yaochu. A social learning particle swarm optimization algorithm for scalable optimization[J]. Information Sciences, 2015, 291: 43–60. doi: 10.1016/j.ins.2014.08.039
    SABAR N R, ABAWAJY J, and YEARWOOD J. Heterogeneous cooperative co-evolution memetic differential evolution algorithm for big data optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(2): 315–327. doi: 10.1109/TEVC.2016.2602860
    CHENG Ran and JIN Yaochu. A competitive swarm optimizer for large scale optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 191–204. doi: 10.1109/TCYB.2014.2322602
  • 加載中
圖(4) / 表(4)
計量
  • 文章訪問數(shù):  3460
  • HTML全文瀏覽量:  1553
  • PDF下載量:  84
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-08-12
  • 修回日期:  2020-02-18
  • 網(wǎng)絡(luò)出版日期:  2020-03-18
  • 刊出日期:  2020-08-18

目錄

    /

    返回文章
    返回