一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

昆蟲雷達(dá)散射截面積特性分析

胡程 方琳琳 王銳 周超 李衛(wèi)東 張帆 郎添嬌 龍騰

胡程, 方琳琳, 王銳, 周超, 李衛(wèi)東, 張帆, 郎添嬌, 龍騰. 昆蟲雷達(dá)散射截面積特性分析[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 140-153. doi: 10.11999/JEIT190611
引用本文: 胡程, 方琳琳, 王銳, 周超, 李衛(wèi)東, 張帆, 郎添嬌, 龍騰. 昆蟲雷達(dá)散射截面積特性分析[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 140-153. doi: 10.11999/JEIT190611
Cheng HU, Linlin FANG, Rui WANG, Chao ZHOU, Weidong LI, Fan ZHANG, Tianjiao LANG, Teng LONG. Analysis of Insect RCS Characteristics[J]. Journal of Electronics & Information Technology, 2020, 42(1): 140-153. doi: 10.11999/JEIT190611
Citation: Cheng HU, Linlin FANG, Rui WANG, Chao ZHOU, Weidong LI, Fan ZHANG, Tianjiao LANG, Teng LONG. Analysis of Insect RCS Characteristics[J]. Journal of Electronics & Information Technology, 2020, 42(1): 140-153. doi: 10.11999/JEIT190611

昆蟲雷達(dá)散射截面積特性分析

doi: 10.11999/JEIT190611 cstr: 32379.14.JEIT190611
基金項(xiàng)目: 國家重大科研儀器研制項(xiàng)目(31727901)
詳細(xì)信息
    作者簡介:

    胡程:男,1981年生,研究員,博士生導(dǎo)師,研究方向?yàn)樾麦w制合成孔徑雷達(dá)系統(tǒng)與信號(hào)處理、生物探測雷達(dá)系統(tǒng)與信息處理技術(shù)等

    方琳琳:女,1993年生,博士生,研究方向?yàn)槔走_(dá)目標(biāo)檢測跟蹤算法

    王銳:男,1985年生,副教授,博士生導(dǎo)師,研究方向?yàn)槔ハx雷達(dá)信號(hào)處理等

    周超:男,1987年生,博士后,研究方向?yàn)槔走_(dá)目標(biāo)檢測跟蹤算法

    李衛(wèi)東:男,1991年生,博士生,研究方向?yàn)槔ハx雷達(dá)極化信號(hào)處理

    張帆:男,1996年生,博士生,研究方向?yàn)榭罩猩锬繕?biāo)電磁仿真

    郎添嬌:女,1994年生,碩士生,研究方向?yàn)榭罩猩锬繕?biāo)電磁仿真

    龍騰:男,1968年生,教 授,研究方向?yàn)閷?shí)時(shí)信號(hào)與信息處理

    通訊作者:

    王銳 bit.wangrui@gmail.com

  • 中圖分類號(hào): TN959.4

Analysis of Insect RCS Characteristics

Funds: The Special Fund for Research on National Major Research Instruments (31727901)
  • 摘要:

    昆蟲雷達(dá)是觀測昆蟲遷飛最有效的工具。研究昆蟲的雷達(dá)散射截面積(RCS)特性對(duì)于昆蟲雷達(dá)目標(biāo)識(shí)別有著重要意義。該文將分析昆蟲的靜態(tài)RCS特性和動(dòng)態(tài)RCS特性。首先,基于實(shí)測的X波段全極化昆蟲RCS數(shù)據(jù),分析昆蟲的靜態(tài)RCS特性,包括水平和垂直極化RCS隨體重變化規(guī)律以及昆蟲極化方向圖隨體重的變化規(guī)律。其次,總結(jié)當(dāng)前通過電磁仿真研究昆蟲RCS特性所用到的介質(zhì)和幾何形狀模型,并對(duì)比了水、脊髓、干皮膚和殼質(zhì)與血淋巴混合物4種介質(zhì)和等體型扁長橢球體、等質(zhì)量扁長橢球體和三軸橢球體3種幾何模型組成的12種介質(zhì)模型,經(jīng)過電磁仿真結(jié)果與實(shí)測數(shù)據(jù)相對(duì)比發(fā)現(xiàn)脊髓介質(zhì)等質(zhì)量扁長橢球體模型與實(shí)測昆蟲RCS特性最接近。然后,基于Ku波段高分辨昆蟲雷達(dá)外場實(shí)測昆蟲回波數(shù)據(jù),分析了昆蟲動(dòng)態(tài)RCS的起伏特性,將實(shí)測昆蟲動(dòng)態(tài)RCS起伏數(shù)據(jù)與4種經(jīng)典的RCS起伏分布模型χ2, Log-normal, Weibull和Gamma分布分別進(jìn)行了擬合分析,從最小二乘擬合誤差和擬合優(yōu)度檢驗(yàn)結(jié)果可以看出,相比于其他3種模型,Gamma分布可以較好地描述昆蟲目標(biāo)RCS起伏的統(tǒng)計(jì)特性。最后,綜述了昆蟲RCS特性在昆蟲雷達(dá)測量昆蟲朝向、體重等參數(shù)測量的應(yīng)用。

  • 圖  1  RCS與昆蟲體重關(guān)系

    圖  2  實(shí)測昆蟲RCS極化特性

    圖  3  昆蟲目標(biāo)幾何模型

    圖  4  不同模型-介質(zhì)仿真RCS百分比誤差

    圖  5  昆蟲目標(biāo)RCS起伏模型研究流程

    圖  6  昆蟲RCS起伏

    圖  7  昆蟲RCS起伏幅度PDF擬合

    表  1  實(shí)驗(yàn)昆蟲樣本信息

    序號(hào)昆蟲名稱體長(mm)體寬(mm)體重(mg)
    1未辨識(shí)飛蛾1#111.12.825.6
    2未辨識(shí)飛蛾1#215.03.035.5
    3枯葉蛾#116.74.072.2
    4枯葉蛾#217.95.0105.0
    5小地老虎19.54.9218.4
    6霜天蛾34.89.1319.7
    7未辨識(shí)飛蛾222.96.8400.7
    8甘薯天蛾#138.99.0530.1
    9甘薯天蛾#240.012.4680.4
    10甘薯天蛾#336.810.2935.3
    下載: 導(dǎo)出CSV

    表  2  介質(zhì)密度及相對(duì)介電常數(shù)

    介質(zhì)密度ρ(g/cm3)X波段相對(duì)介電常數(shù)
    1.00060.30-33.10j
    脊髓1.03823.80-10.84j
    干皮膚1.04531.30-14.41j
    殼質(zhì)與血淋巴混合物1.26034.30-18.60j
    下載: 導(dǎo)出CSV

    表  3  等尺寸橢球體模型質(zhì)量百分比誤差(%)

    昆蟲序號(hào)脊髓干皮膚殼質(zhì)混合物
    1–77.99–84.75–86.00–124.27
    2–99.12–106.68–108.08–150.88
    3–93.78–101.14–102.49–144.16
    4–123.15–131.63–133.19–181.17
    5–12.25–16.51–17.30–41.43
    6–371.97–389.91–393.21–494.69
    7–38.37–43.63–44.59–74.34
    8–211.23–223.05–225.23–292.14
    9–373.30–391.29–394.60–496.36
    10–114.34–122.48–123.98–170.06
    平均誤差–151.55–161.11–162.87–216.95
    下載: 導(dǎo)出CSV

    表  4  等質(zhì)量橢球體模型體長百分比誤差(%)

    昆蟲序號(hào)脊髓干皮膚殼質(zhì)混合物
    117.4818.5018.6923.60
    220.5121.4921.6726.41
    319.7920.7820.9625.74
    423.4824.4224.5929.15
    53.784.975.1810.91
    640.3841.1241.2544.80
    710.2611.3711.5716.91
    831.5132.3532.5136.59
    940.4441.1841.3144.86
    1022.4423.4023.5728.19
    平均誤差23.0123.9624.1328.72
    下載: 導(dǎo)出CSV

    表  5  三軸橢球體模型高度百分比誤差(%)

    昆蟲序號(hào)脊髓干皮膚殼質(zhì)混合物
    143.8245.8746.2355.41
    249.7851.6251.9460.14
    348.3950.2850.6259.04
    455.1956.8357.1264.43
    510.9114.1714.7529.29
    678.8179.5979.7283.18
    727.7330.3730.8442.64
    867.8769.0569.2574.50
    978.8779.6579.7883.23
    1053.3455.0555.3562.97
    平均誤差51.4753.2553.5661.49
    下載: 導(dǎo)出CSV

    表  6  等質(zhì)量橢球體模型RCS百分比誤差(%)

    介質(zhì)極化方向平行
    體軸RCS
    極化方向垂直
    體軸RCS
    224.322.1
    脊髓65.919.7
    干皮膚101.26.7
    殼質(zhì)與血淋巴混合物68.832.8
    下載: 導(dǎo)出CSV

    表  7  分布函數(shù)表達(dá)式

    分布函數(shù)表達(dá)式參數(shù)
    ${\chi ^2}$$p\left( \sigma \right) = \dfrac{m}{ {\varGamma \left( m \right)\bar \sigma } }{\left[ {\dfrac{ {m\sigma } }{ {\bar \sigma } } } \right]^{m - 1} }\exp \left[ {\dfrac{ { - m\sigma } }{ {\bar \sigma } } } \right]$$\bar \sigma $為平均值,$2m$為自由度
    Log-normal$p\left( \sigma \right) = \dfrac{1}{{\sigma \sqrt {4{\pi }\ln \rho } }}\exp \left\{ {\dfrac{{ - {{\left( {\ln \sigma - {\sigma _0}} \right)}^2}}}{{4\ln \rho }}} \right\}$${\sigma _0}$為中值,$\rho $為平均中值比
    Gamma$p\left( \sigma \right) = \dfrac{1}{ { {\beta ^\alpha }\varGamma \left( \alpha \right)} }{\sigma ^{\alpha - 1} }\exp \left( { - \dfrac{\sigma }{\beta } } \right)$$\alpha $是形狀參數(shù),$\beta $是尺度參數(shù)
    Weibull$p\left( \sigma \right) = \dfrac{a}{\left( {\dfrac{\sigma }{a}} \right)^{b - 1}}\exp \left( { - {{\left( {\dfrac{\sigma }{a}} \right)}^b}} \right)$$a$是尺度參數(shù),$b$是形狀參數(shù)
    下載: 導(dǎo)出CSV

    表  8  昆蟲RCS起伏PDF分布擬合誤差

    昆蟲序號(hào)RCS起伏
    樣本點(diǎn)數(shù)
    Log-normal${\chi ^2}$GammaWeibull
    115000.08120.38700.07470.0960
    212500.12880.57740.12040.1307
    312800.07240.77090.07100.1102
    413400.09920.56520.09600.1262
    514600.08610.35550.07650.0903
    均值0.09350.53120.08770.1107
    下載: 導(dǎo)出CSV

    表  9  昆蟲RCS起伏PDF分布K-S檢驗(yàn)參數(shù)D

    昆蟲序號(hào)RCS起伏
    樣本點(diǎn)數(shù)
    Log-normalχ2GammaWeibull
    115000.02210.21410.01810.0370
    212500.03060.20450.01690.0266
    312800.01950.20940.00960.0342
    413400.02110.18310.01810.0356
    514600.02580.15830.01450.0271
    均值0.02380.19390.01540.0321
    下載: 導(dǎo)出CSV
  • HU Gao, LIM K S, HORVITZ N, et al. Mass seasonal bioflows of high-flying insect migrants[J]. Science, 2016, 354(6319): 1584–1587. doi: 10.1126/science.aah4379
    吳秋琳, 姜玉英, 胡高, 等. 中國熱帶和南亞熱帶地區(qū)草地貪夜蛾春夏兩季遷飛軌跡的分析[J]. 植物保護(hù), 2019, 45(3): 1–9.

    WU Qiulin, JIANG Yuying, HU Gao, et al. Analysis on spring and summer migration routes of fall armyworm (Spodoptera frugiperda) from tropical and southern subtropical zones of China[J]. Plant Protection, 2019, 45(3): 1–9.
    HU Cheng, WANG Yixuan, WANG Rui, et al. An improved radar detection and tracking method for small UAV under clutter environment[J]. Science China Information Sciences, 2019, 62(2): 29306. doi: 10.1007/s11432-018-9598-x
    ZHOU Chao, WANG Rui, and HU Cheng. Equivalent point estimation for small target groups tracking based on MLE[J]. Science China Information Sciences, 2019. doi: 10.1007/s11432-019-1518-x
    SMITH A D, RILEY J R, and GREGORY R D. A method for routine monitoring of the aerial migration of insects by using a vertical-looking radar[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 340(1294): 393–404. doi: 10.1098/rstb.1993.0081
    GLOVER K M, HARDY K R, LANDRY C R, et al. Radar characteristics of known insects in free flight[C]. The 12th Conference on Radar Meteorology, Oklahoma, USA, 1966: 254–258.
    RILEY J R. Angular and temporal variations in the radar cross-sections of insects[J]. Proceedings of the Institution of Electrical Engineers, 1973, 120(10): 1229–1232. doi: 10.1049/piee.1973.0251
    RILEY J R, VAUGHN C R, WOLF W, et al. Quantitative analysis of radar returns from insects[C]. A Workshop Held at NASA Wallops Flight Center, Wallops Island, USA, 1978: 131–158.
    RILEY J R. Radar cross section of insects[J]. Proceedings of the IEEE, 1985, 73(2): 228–232. doi: 10.1109/PROC.1985.13135
    ALDHOUS A C. An investigation of the polarisation dependence of insect radar cross sections at constant aspect[D]. [Ph.D. dissertation], Cranfield University, 1989.
    MURTON R K and WRIGHT E N. The Problems of Birds as Pests[M]. New York: Academic Press, 1968: 53–86.
    SCHAEFER G W. Radar observations of insect flight[C]. Insect Flight Symposia of the Royal Entomological Society, London, UK, 1976: 157–197.
    MIRKOVIC D, STEPANIAN P M, WAINWRIGHT C E, et al. Characterizing animal anatomy and internal composition for electromagnetic modelling in radar entomology[J]. Remote Sensing in Ecology and Conservation, 2019, 5(2): 169–179. doi: 10.1002/rse2.94
    WANG Rui, HU Cheng, LIU Changjiang, et al. Migratory insect multifrequency radar cross sections for morphological parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3450–3461. doi: 10.1109/TGRS.2018.2884926
    HU Cheng, LI Wenqing, WANG Rui, et al. Insect flight speed estimation analysis based on a full-polarization radar[J]. Science China Information Sciences, 2018, 61(10): 109306. doi: 10.1007/s11432-018-9484-2
    WANG Rui, HU Cheng, FU Xiaowei, et al. Micro-Doppler measurement of insect wing-beat frequencies with W-band coherent radar[J]. Scientific Reports, 2017, 7(1): 1396. doi: 10.1038/s41598-017-01616-4
    HU Cheng, KONG Shaoyang, WANG Rui, et al. Identification of migratory insects from their physical features using a decision-tree support vector machine and its application to radar entomology[J]. Scientific Reports, 2018, 8(1): 5449. doi: 10.1038/S41598-018-23825-1
    汪兵. 非獨(dú)立同分布起伏目標(biāo)建模與檢測算法研究[D].[博士論文], 電子科技大學(xué), 2017.

    WANG Bing. Research on modeling and the detection algorithm of non-ⅡD fluctuation targets[D].[Ph.D. dissertation], University of Electronic Science and Technology of China, 2017.
    SWERLING P. Probability of detection for fluctuating targets[J]. IRE Transactions on Information Theory, 1960, 6(2): 269–308. doi: 10.1109/TIT.1960.1057561
    WEINSTOCK W. Target cross section models for radar system analysis[D]. [Ph.D. dissertation], University of Pennsylvania, 1964.
    LEWINSKI D. Nonstationary probabilistic target and clutter scattering models[J]. IEEE Transactions on Antennas and Propagation, 1983, 31(3): 490–498. doi: 10.1109/TAP.1983.1143067
    SHNIDMAN D A. Expanded Swerling target models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1059–1069. doi: 10.1109/TAES.2003.1238757
    ROSE M, HAIMOV S, and MOORE R K. Optimum detection of Weibull-distributed targets[C]. OCEANS '93, Victoria, Canada, 1993: Ⅱ/5-Ⅱ/9. doi: 10.1109/OCEANS.1993.326056.
    SHNIDMAN D A. Calculation of probability of detection for log-normal target fluctuations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(1): 172–174. doi: 10.1109/7.68161
    SLOCUMB B J and KLUSMAN Ⅲ M E. A multiple model SNR/RCS likelihood ratio score for radar-based feature-aided tracking[J]. SPIE, 2005, 5913: 540–551. doi: 10.1117/12.615288
    SHI Weiqiang, SHI Xiaowei, and XU Le. Radar Cross Section (RCS) statistical characterization using Weibull distribution[J]. Microwave and Optical Technology Letters, 2013, 55(6): 1355–1358. doi: 10.1002/mop.27557
    林剛, 許家棟. 目標(biāo)RCS動(dòng)態(tài)數(shù)據(jù)的分布特征研究[J]. 現(xiàn)代雷達(dá), 2006, 28(2): 18–20. doi: 10.3969/j.issn.1004-7859.2006.02.006

    LIN Gang and XU Jiadong. Study of the statistical characterization of targets’ RCS dynamic data[J]. Modern Radar, 2006, 28(2): 18–20. doi: 10.3969/j.issn.1004-7859.2006.02.006
    史偉強(qiáng), 徐樂, 史小衛(wèi), 等. 基于完備對(duì)數(shù)正態(tài)分布模型的隱形飛行器動(dòng)態(tài)RCS統(tǒng)計(jì)特性研究[J]. 電子與信息學(xué)報(bào), 2013, 35(9): 2121–2125. doi: 10.3724/SP.J.1146.2012.01161

    SHI Weiqiang, XU Le, SHI Xiaowei, et al. Dynamic RCS statistic characterization of stealth aircraft using complete lognormal distribution[J]. Journal of Electronics &Information Technology, 2013, 35(9): 2121–2125. doi: 10.3724/SP.J.1146.2012.01161
    沈鵬. 海面艦船RCS起伏分布模型研究[J]. 指揮控制與仿真, 2019, 41(4): 37–39. doi: 10.3969/j.issn.1673-3819.2019.04.008

    SHEN Peng. RCS fluctuation distribution models research of Ship Target on Sea[J]. Command Control &Simulation, 2019, 41(4): 37–39. doi: 10.3969/j.issn.1673-3819.2019.04.008
    SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York, USA: McGraw-Hill, 2008.
    HU Cheng, LI Weidong, WANG Rui, et al. Accurate insect orientation extraction based on polarization scattering matrix estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1755–1759. doi: 10.1109/LGRS.2017.2733719
    HOBBS S E and ALDHOUS A C. Insect ventral radar cross-section polarisation dependence measurements for radar entomology[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(6): 502–508. doi: 10.1049/ip-rsn:20060019
    VAUGHN C R. Birds and insects as radar targets: A review[J]. Proceedings of the IEEE, 1985, 73(2): 205–227. doi: 10.1109/proc.1985.13134
    MIRKOVIC D, STEPANIAN P M, KELLY J F, et al. Electromagnetic model reliably predicts radar scattering characteristics of airborne organisms[J]. Scientific Reports, 2016, 6(1): 35637. doi: 10.1038/srep35637
    NELSON S O, BARTLEY P G Jr, and LAWRENCE K C. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control[J]. Transactions of the ASAE, 1998, 41(3): 685–692. doi: 10.13031/2013.17194
    HOBBS S, ALLSOPP K, and WOLF W. Signal analysis for an entomological radar with a vertical Nutating beam[R]. College of Aeronautics Report 9919, 2003.
    DOWDY P C. RCS probability distribution function modeling of a fluctuating target[C]. The 1991 IEEE National Radar Conference, Los Angeles, USA, 1991: 164–168. doi: 10.1109/NRC.1991.114752.
    RILEY J R. Collective orientation in night-flying insects[J]. Nature, 1975, 253(5487): 113–114. doi: 10.1038/253113a0
    CHAPMAN J W, NESBIT R L, BURGIN L E, et al. Flight orientation behaviors promote optimal migration trajectories in high-flying insects[J]. Science, 2010, 327(5966): 682–685. doi: 10.1126/science.1182990
    HARMAN I T and DRAKE V A. Insect monitoring radar: Analytical time-domain algorithm for retrieving trajectory and target parameters[J]. Computers and Electronics in Agriculture, 2004, 43(1): 23–41. doi: 10.1016/j.compag.2003.08.005
    HU Cheng, LI Weidong, WANG Rui, et al. Insect biological parameter estimation based on the invariant target parameters of the scattering matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6212–6225. doi: 10.1109/TGRS.2019.2904869
    CHAPMAN J W, SMITH A D, WOIWOD I P, et al. Development of vertical-looking radar technology for monitoring insect migration[J]. Computers and Electronics in Agriculture, 2002, 35(2/3): 95–110. doi: 10.1016/s0168-1699(02)00013-3
    DRAKE V A, CHAPMAN J W, LIM K S, et al. Ventral-aspect radar cross sections and polarization patterns of insects at X band and their relation to size and form[J]. International Journal of Remote Sensing, 2017, 38(18): 5022–5044. doi: 10.1080/01431161.2017.1320453
    HU Cheng, LI Weidong, WANG Rui, et al. Accurate insect body length extraction based on the invariant target parameters[C]. 2018 IEEE International Conference on Computational Electromagnetics, Chengdu, China, 2018: 1–3. doi: 10.1109/COMPEM.2018.8496592.
  • 加載中
圖(7) / 表(9)
計(jì)量
  • 文章訪問數(shù):  3243
  • HTML全文瀏覽量:  1393
  • PDF下載量:  157
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-08-12
  • 修回日期:  2019-11-22
  • 網(wǎng)絡(luò)出版日期:  2019-11-30
  • 刊出日期:  2020-01-21

目錄

    /

    返回文章
    返回