昆蟲雷達(dá)散射截面積特性分析
doi: 10.11999/JEIT190611 cstr: 32379.14.JEIT190611
-
1.
北京理工大學(xué)雷達(dá)技術(shù)研究所 北京 100081
-
2.
北京理工大學(xué)衛(wèi)星導(dǎo)航電子信息技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室 北京 100081
Analysis of Insect RCS Characteristics
-
1.
Radar Research Laboratory, Beijing Institute of Technology, Beijing 100081, China
-
2.
Key Laboratory of Electronic and Information Technology in Satellite Navigation of Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
-
摘要:
昆蟲雷達(dá)是觀測昆蟲遷飛最有效的工具。研究昆蟲的雷達(dá)散射截面積(RCS)特性對(duì)于昆蟲雷達(dá)目標(biāo)識(shí)別有著重要意義。該文將分析昆蟲的靜態(tài)RCS特性和動(dòng)態(tài)RCS特性。首先,基于實(shí)測的X波段全極化昆蟲RCS數(shù)據(jù),分析昆蟲的靜態(tài)RCS特性,包括水平和垂直極化RCS隨體重變化規(guī)律以及昆蟲極化方向圖隨體重的變化規(guī)律。其次,總結(jié)當(dāng)前通過電磁仿真研究昆蟲RCS特性所用到的介質(zhì)和幾何形狀模型,并對(duì)比了水、脊髓、干皮膚和殼質(zhì)與血淋巴混合物4種介質(zhì)和等體型扁長橢球體、等質(zhì)量扁長橢球體和三軸橢球體3種幾何模型組成的12種介質(zhì)模型,經(jīng)過電磁仿真結(jié)果與實(shí)測數(shù)據(jù)相對(duì)比發(fā)現(xiàn)脊髓介質(zhì)等質(zhì)量扁長橢球體模型與實(shí)測昆蟲RCS特性最接近。然后,基于Ku波段高分辨昆蟲雷達(dá)外場實(shí)測昆蟲回波數(shù)據(jù),分析了昆蟲動(dòng)態(tài)RCS的起伏特性,將實(shí)測昆蟲動(dòng)態(tài)RCS起伏數(shù)據(jù)與4種經(jīng)典的RCS起伏分布模型χ2, Log-normal, Weibull和Gamma分布分別進(jìn)行了擬合分析,從最小二乘擬合誤差和擬合優(yōu)度檢驗(yàn)結(jié)果可以看出,相比于其他3種模型,Gamma分布可以較好地描述昆蟲目標(biāo)RCS起伏的統(tǒng)計(jì)特性。最后,綜述了昆蟲RCS特性在昆蟲雷達(dá)測量昆蟲朝向、體重等參數(shù)測量的應(yīng)用。
-
關(guān)鍵詞:
- 昆蟲雷達(dá) /
- 昆蟲雷達(dá)散射截面積特性 /
- 電磁仿真 /
- 雷達(dá)散射截面積起伏
Abstract:Insect radar is the most effective tool for insect migration observation. In order to realize target recognition of insect radar, it is important to study the RCS characteristics of insects. This paper will analyze the static and dynamic Radar Cross Section (RCS) characteristics of insects. Firstly, based on the measured X-band fully-polarimetric RCS data, the static RCS characteristics of insects are analyzed, including the variations of horizontal and vertical polarization RCS with body weight respectively, and the variation of insect polarization pattern with body weight. Secondly, the dielectrics and geometric models currently used to study the RCS characteristics of insects are summarized by electromagnetic simulation. Twelve dielectric models consisting of four dielectrics (including water, spinal cord, dry skin, and chitin and hemolymph mixture) and three geometric models (including equivalent size prolate spheroid, equivalent mass prolate spheroid and triaxial prolate spheroid) are compared, and it be found that the RCS characteristics of equivalent mass prolate spheroid are closest to that of the real insects. Then, the fluctuation characteristics of insect dynamic RCS are analyzed based on the insect echo data measured in field by a Ku-band high-resolution insect radar. The measured insect dynamic RCS fluctuation data are fitted with four classical RCS fluctuation distribution models (χ2, Log-normal, Weibull and Gamma distribution), respectively. It can be seen from the least square error of fitting and goodness of fit test that Gamma distribution gives the best description of the statistical characteristics of insect RCS fluctuations. Finally, the application of insect RCS characteristics to insect orientation, mass and body length measurements for insect radars is summarized.
-
表 1 實(shí)驗(yàn)昆蟲樣本信息
序號(hào) 昆蟲名稱 體長(mm) 體寬(mm) 體重(mg) 1 未辨識(shí)飛蛾1#1 11.1 2.8 25.6 2 未辨識(shí)飛蛾1#2 15.0 3.0 35.5 3 枯葉蛾#1 16.7 4.0 72.2 4 枯葉蛾#2 17.9 5.0 105.0 5 小地老虎 19.5 4.9 218.4 6 霜天蛾 34.8 9.1 319.7 7 未辨識(shí)飛蛾2 22.9 6.8 400.7 8 甘薯天蛾#1 38.9 9.0 530.1 9 甘薯天蛾#2 40.0 12.4 680.4 10 甘薯天蛾#3 36.8 10.2 935.3 下載: 導(dǎo)出CSV
表 2 介質(zhì)密度及相對(duì)介電常數(shù)
介質(zhì) 密度ρ(g/cm3) X波段相對(duì)介電常數(shù) 水 1.000 60.30-33.10j 脊髓 1.038 23.80-10.84j 干皮膚 1.045 31.30-14.41j 殼質(zhì)與血淋巴混合物 1.260 34.30-18.60j 下載: 導(dǎo)出CSV
表 3 等尺寸橢球體模型質(zhì)量百分比誤差(%)
昆蟲序號(hào) 水 脊髓 干皮膚 殼質(zhì)混合物 1 –77.99 –84.75 –86.00 –124.27 2 –99.12 –106.68 –108.08 –150.88 3 –93.78 –101.14 –102.49 –144.16 4 –123.15 –131.63 –133.19 –181.17 5 –12.25 –16.51 –17.30 –41.43 6 –371.97 –389.91 –393.21 –494.69 7 –38.37 –43.63 –44.59 –74.34 8 –211.23 –223.05 –225.23 –292.14 9 –373.30 –391.29 –394.60 –496.36 10 –114.34 –122.48 –123.98 –170.06 平均誤差 –151.55 –161.11 –162.87 –216.95 下載: 導(dǎo)出CSV
表 4 等質(zhì)量橢球體模型體長百分比誤差(%)
昆蟲序號(hào) 水 脊髓 干皮膚 殼質(zhì)混合物 1 17.48 18.50 18.69 23.60 2 20.51 21.49 21.67 26.41 3 19.79 20.78 20.96 25.74 4 23.48 24.42 24.59 29.15 5 3.78 4.97 5.18 10.91 6 40.38 41.12 41.25 44.80 7 10.26 11.37 11.57 16.91 8 31.51 32.35 32.51 36.59 9 40.44 41.18 41.31 44.86 10 22.44 23.40 23.57 28.19 平均誤差 23.01 23.96 24.13 28.72 下載: 導(dǎo)出CSV
表 5 三軸橢球體模型高度百分比誤差(%)
昆蟲序號(hào) 水 脊髓 干皮膚 殼質(zhì)混合物 1 43.82 45.87 46.23 55.41 2 49.78 51.62 51.94 60.14 3 48.39 50.28 50.62 59.04 4 55.19 56.83 57.12 64.43 5 10.91 14.17 14.75 29.29 6 78.81 79.59 79.72 83.18 7 27.73 30.37 30.84 42.64 8 67.87 69.05 69.25 74.50 9 78.87 79.65 79.78 83.23 10 53.34 55.05 55.35 62.97 平均誤差 51.47 53.25 53.56 61.49 下載: 導(dǎo)出CSV
表 6 等質(zhì)量橢球體模型RCS百分比誤差(%)
介質(zhì) 極化方向平行
體軸RCS極化方向垂直
體軸RCS水 224.3 22.1 脊髓 65.9 19.7 干皮膚 101.2 6.7 殼質(zhì)與血淋巴混合物 68.8 32.8 下載: 導(dǎo)出CSV
表 7 分布函數(shù)表達(dá)式
分布函數(shù) 表達(dá)式 參數(shù) ${\chi ^2}$ $p\left( \sigma \right) = \dfrac{m}{ {\varGamma \left( m \right)\bar \sigma } }{\left[ {\dfrac{ {m\sigma } }{ {\bar \sigma } } } \right]^{m - 1} }\exp \left[ {\dfrac{ { - m\sigma } }{ {\bar \sigma } } } \right]$ $\bar \sigma $為平均值,$2m$為自由度 Log-normal $p\left( \sigma \right) = \dfrac{1}{{\sigma \sqrt {4{\pi }\ln \rho } }}\exp \left\{ {\dfrac{{ - {{\left( {\ln \sigma - {\sigma _0}} \right)}^2}}}{{4\ln \rho }}} \right\}$ ${\sigma _0}$為中值,$\rho $為平均中值比 Gamma $p\left( \sigma \right) = \dfrac{1}{ { {\beta ^\alpha }\varGamma \left( \alpha \right)} }{\sigma ^{\alpha - 1} }\exp \left( { - \dfrac{\sigma }{\beta } } \right)$ $\alpha $是形狀參數(shù),$\beta $是尺度參數(shù) Weibull $p\left( \sigma \right) = \dfrac{a}{\left( {\dfrac{\sigma }{a}} \right)^{b - 1}}\exp \left( { - {{\left( {\dfrac{\sigma }{a}} \right)}^b}} \right)$ $a$是尺度參數(shù),$b$是形狀參數(shù) 下載: 導(dǎo)出CSV
表 8 昆蟲RCS起伏PDF分布擬合誤差
昆蟲序號(hào) RCS起伏
樣本點(diǎn)數(shù)Log-normal ${\chi ^2}$ Gamma Weibull 1 1500 0.0812 0.3870 0.0747 0.0960 2 1250 0.1288 0.5774 0.1204 0.1307 3 1280 0.0724 0.7709 0.0710 0.1102 4 1340 0.0992 0.5652 0.0960 0.1262 5 1460 0.0861 0.3555 0.0765 0.0903 均值 0.0935 0.5312 0.0877 0.1107 下載: 導(dǎo)出CSV
表 9 昆蟲RCS起伏PDF分布K-S檢驗(yàn)參數(shù)D值
昆蟲序號(hào) RCS起伏
樣本點(diǎn)數(shù)Log-normal χ2 Gamma Weibull 1 1500 0.0221 0.2141 0.0181 0.0370 2 1250 0.0306 0.2045 0.0169 0.0266 3 1280 0.0195 0.2094 0.0096 0.0342 4 1340 0.0211 0.1831 0.0181 0.0356 5 1460 0.0258 0.1583 0.0145 0.0271 均值 0.0238 0.1939 0.0154 0.0321 下載: 導(dǎo)出CSV
-
HU Gao, LIM K S, HORVITZ N, et al. Mass seasonal bioflows of high-flying insect migrants[J]. Science, 2016, 354(6319): 1584–1587. doi: 10.1126/science.aah4379 吳秋琳, 姜玉英, 胡高, 等. 中國熱帶和南亞熱帶地區(qū)草地貪夜蛾春夏兩季遷飛軌跡的分析[J]. 植物保護(hù), 2019, 45(3): 1–9.WU Qiulin, JIANG Yuying, HU Gao, et al. Analysis on spring and summer migration routes of fall armyworm (Spodoptera frugiperda) from tropical and southern subtropical zones of China[J]. Plant Protection, 2019, 45(3): 1–9. HU Cheng, WANG Yixuan, WANG Rui, et al. An improved radar detection and tracking method for small UAV under clutter environment[J]. Science China Information Sciences, 2019, 62(2): 29306. doi: 10.1007/s11432-018-9598-x ZHOU Chao, WANG Rui, and HU Cheng. Equivalent point estimation for small target groups tracking based on MLE[J]. Science China Information Sciences, 2019. doi: 10.1007/s11432-019-1518-x SMITH A D, RILEY J R, and GREGORY R D. A method for routine monitoring of the aerial migration of insects by using a vertical-looking radar[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 340(1294): 393–404. doi: 10.1098/rstb.1993.0081 GLOVER K M, HARDY K R, LANDRY C R, et al. Radar characteristics of known insects in free flight[C]. The 12th Conference on Radar Meteorology, Oklahoma, USA, 1966: 254–258. RILEY J R. Angular and temporal variations in the radar cross-sections of insects[J]. Proceedings of the Institution of Electrical Engineers, 1973, 120(10): 1229–1232. doi: 10.1049/piee.1973.0251 RILEY J R, VAUGHN C R, WOLF W, et al. Quantitative analysis of radar returns from insects[C]. A Workshop Held at NASA Wallops Flight Center, Wallops Island, USA, 1978: 131–158. RILEY J R. Radar cross section of insects[J]. Proceedings of the IEEE, 1985, 73(2): 228–232. doi: 10.1109/PROC.1985.13135 ALDHOUS A C. An investigation of the polarisation dependence of insect radar cross sections at constant aspect[D]. [Ph.D. dissertation], Cranfield University, 1989. MURTON R K and WRIGHT E N. The Problems of Birds as Pests[M]. New York: Academic Press, 1968: 53–86. SCHAEFER G W. Radar observations of insect flight[C]. Insect Flight Symposia of the Royal Entomological Society, London, UK, 1976: 157–197. MIRKOVIC D, STEPANIAN P M, WAINWRIGHT C E, et al. Characterizing animal anatomy and internal composition for electromagnetic modelling in radar entomology[J]. Remote Sensing in Ecology and Conservation, 2019, 5(2): 169–179. doi: 10.1002/rse2.94 WANG Rui, HU Cheng, LIU Changjiang, et al. Migratory insect multifrequency radar cross sections for morphological parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3450–3461. doi: 10.1109/TGRS.2018.2884926 HU Cheng, LI Wenqing, WANG Rui, et al. Insect flight speed estimation analysis based on a full-polarization radar[J]. Science China Information Sciences, 2018, 61(10): 109306. doi: 10.1007/s11432-018-9484-2 WANG Rui, HU Cheng, FU Xiaowei, et al. Micro-Doppler measurement of insect wing-beat frequencies with W-band coherent radar[J]. Scientific Reports, 2017, 7(1): 1396. doi: 10.1038/s41598-017-01616-4 HU Cheng, KONG Shaoyang, WANG Rui, et al. Identification of migratory insects from their physical features using a decision-tree support vector machine and its application to radar entomology[J]. Scientific Reports, 2018, 8(1): 5449. doi: 10.1038/S41598-018-23825-1 汪兵. 非獨(dú)立同分布起伏目標(biāo)建模與檢測算法研究[D].[博士論文], 電子科技大學(xué), 2017.WANG Bing. Research on modeling and the detection algorithm of non-ⅡD fluctuation targets[D].[Ph.D. dissertation], University of Electronic Science and Technology of China, 2017. SWERLING P. Probability of detection for fluctuating targets[J]. IRE Transactions on Information Theory, 1960, 6(2): 269–308. doi: 10.1109/TIT.1960.1057561 WEINSTOCK W. Target cross section models for radar system analysis[D]. [Ph.D. dissertation], University of Pennsylvania, 1964. LEWINSKI D. Nonstationary probabilistic target and clutter scattering models[J]. IEEE Transactions on Antennas and Propagation, 1983, 31(3): 490–498. doi: 10.1109/TAP.1983.1143067 SHNIDMAN D A. Expanded Swerling target models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1059–1069. doi: 10.1109/TAES.2003.1238757 ROSE M, HAIMOV S, and MOORE R K. Optimum detection of Weibull-distributed targets[C]. OCEANS '93, Victoria, Canada, 1993: Ⅱ/5-Ⅱ/9. doi: 10.1109/OCEANS.1993.326056. SHNIDMAN D A. Calculation of probability of detection for log-normal target fluctuations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(1): 172–174. doi: 10.1109/7.68161 SLOCUMB B J and KLUSMAN Ⅲ M E. A multiple model SNR/RCS likelihood ratio score for radar-based feature-aided tracking[J]. SPIE, 2005, 5913: 540–551. doi: 10.1117/12.615288 SHI Weiqiang, SHI Xiaowei, and XU Le. Radar Cross Section (RCS) statistical characterization using Weibull distribution[J]. Microwave and Optical Technology Letters, 2013, 55(6): 1355–1358. doi: 10.1002/mop.27557 林剛, 許家棟. 目標(biāo)RCS動(dòng)態(tài)數(shù)據(jù)的分布特征研究[J]. 現(xiàn)代雷達(dá), 2006, 28(2): 18–20. doi: 10.3969/j.issn.1004-7859.2006.02.006LIN Gang and XU Jiadong. Study of the statistical characterization of targets’ RCS dynamic data[J]. Modern Radar, 2006, 28(2): 18–20. doi: 10.3969/j.issn.1004-7859.2006.02.006 史偉強(qiáng), 徐樂, 史小衛(wèi), 等. 基于完備對(duì)數(shù)正態(tài)分布模型的隱形飛行器動(dòng)態(tài)RCS統(tǒng)計(jì)特性研究[J]. 電子與信息學(xué)報(bào), 2013, 35(9): 2121–2125. doi: 10.3724/SP.J.1146.2012.01161SHI Weiqiang, XU Le, SHI Xiaowei, et al. Dynamic RCS statistic characterization of stealth aircraft using complete lognormal distribution[J]. Journal of Electronics &Information Technology, 2013, 35(9): 2121–2125. doi: 10.3724/SP.J.1146.2012.01161 沈鵬. 海面艦船RCS起伏分布模型研究[J]. 指揮控制與仿真, 2019, 41(4): 37–39. doi: 10.3969/j.issn.1673-3819.2019.04.008SHEN Peng. RCS fluctuation distribution models research of Ship Target on Sea[J]. Command Control &Simulation, 2019, 41(4): 37–39. doi: 10.3969/j.issn.1673-3819.2019.04.008 SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York, USA: McGraw-Hill, 2008. HU Cheng, LI Weidong, WANG Rui, et al. Accurate insect orientation extraction based on polarization scattering matrix estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1755–1759. doi: 10.1109/LGRS.2017.2733719 HOBBS S E and ALDHOUS A C. Insect ventral radar cross-section polarisation dependence measurements for radar entomology[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(6): 502–508. doi: 10.1049/ip-rsn:20060019 VAUGHN C R. Birds and insects as radar targets: A review[J]. Proceedings of the IEEE, 1985, 73(2): 205–227. doi: 10.1109/proc.1985.13134 MIRKOVIC D, STEPANIAN P M, KELLY J F, et al. Electromagnetic model reliably predicts radar scattering characteristics of airborne organisms[J]. Scientific Reports, 2016, 6(1): 35637. doi: 10.1038/srep35637 NELSON S O, BARTLEY P G Jr, and LAWRENCE K C. RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control[J]. Transactions of the ASAE, 1998, 41(3): 685–692. doi: 10.13031/2013.17194 HOBBS S, ALLSOPP K, and WOLF W. Signal analysis for an entomological radar with a vertical Nutating beam[R]. College of Aeronautics Report 9919, 2003. DOWDY P C. RCS probability distribution function modeling of a fluctuating target[C]. The 1991 IEEE National Radar Conference, Los Angeles, USA, 1991: 164–168. doi: 10.1109/NRC.1991.114752. RILEY J R. Collective orientation in night-flying insects[J]. Nature, 1975, 253(5487): 113–114. doi: 10.1038/253113a0 CHAPMAN J W, NESBIT R L, BURGIN L E, et al. Flight orientation behaviors promote optimal migration trajectories in high-flying insects[J]. Science, 2010, 327(5966): 682–685. doi: 10.1126/science.1182990 HARMAN I T and DRAKE V A. Insect monitoring radar: Analytical time-domain algorithm for retrieving trajectory and target parameters[J]. Computers and Electronics in Agriculture, 2004, 43(1): 23–41. doi: 10.1016/j.compag.2003.08.005 HU Cheng, LI Weidong, WANG Rui, et al. Insect biological parameter estimation based on the invariant target parameters of the scattering matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6212–6225. doi: 10.1109/TGRS.2019.2904869 CHAPMAN J W, SMITH A D, WOIWOD I P, et al. Development of vertical-looking radar technology for monitoring insect migration[J]. Computers and Electronics in Agriculture, 2002, 35(2/3): 95–110. doi: 10.1016/s0168-1699(02)00013-3 DRAKE V A, CHAPMAN J W, LIM K S, et al. Ventral-aspect radar cross sections and polarization patterns of insects at X band and their relation to size and form[J]. International Journal of Remote Sensing, 2017, 38(18): 5022–5044. doi: 10.1080/01431161.2017.1320453 HU Cheng, LI Weidong, WANG Rui, et al. Accurate insect body length extraction based on the invariant target parameters[C]. 2018 IEEE International Conference on Computational Electromagnetics, Chengdu, China, 2018: 1–3. doi: 10.1109/COMPEM.2018.8496592. -