面向自動駕駛的車輛精確實時定位算法
doi: 10.11999/JEIT190610 cstr: 32379.14.JEIT190610
-
1.
東南大學(xué)移動通信國家重點(diǎn)實驗室 南京 210096
-
2.
福建師范大學(xué)光電與信息工程學(xué)院 福州 350007
High-precision and Real-time Localization Algorithm for Automatic Driving Vehicles
-
1.
National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
-
2.
College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China
-
摘要: 針對車輛自組織網(wǎng)絡(luò)(VANETs)中的車輛定位問題,以提高定位精度和實時性為目標(biāo),該文提出一種面向自動駕駛的車輛精確實時定位算法,包括基于矩陣束(MP)與非線性擬合(NLF)以及基于視覺感知兩種技術(shù)?;贛P-NLF的技術(shù)通過聯(lián)合TOA/AOA估計進(jìn)行車輛單站定位,并引入高分辨率估計以提高估計精度;基于視覺感知的技術(shù)通過提取定位范圍內(nèi)視覺感知圖像的特征信息來完成定位,并結(jié)合慣性信息進(jìn)行無跡卡爾曼濾波進(jìn)一步提高精度。仿真結(jié)果表明,與傳統(tǒng)多徑指紋算法相比,所提算法即使在低信噪比情況下也具有較好的定位性能。
-
關(guān)鍵詞:
- 車輛自組織網(wǎng)絡(luò) /
- 定位 /
- 路邊單元 /
- 高分辨率估計
Abstract: For the problem of vehicle positioning in Vehicular Ad-hoc NETworks (VANETs), in order to improve the positioning accuracy and real-time performance, a high-precision and real-time localization algorithm for automatic driving vehicles is proposed, including two technologies based on Matrix Pencil (MP) and Non-Linear Fitting (NLF), and visual perception. The MP-NLF technology uses joint TOA/AOA estimation to locate vehicles with a single station, and introduces high resolution estimation technology to improve the estimation accuracy. The visual perception based technology completes the localization by extracting the feature information of visual perceptual images in positioning area, carries on the unscented Kalman filter combined with the inertial sensor information to further improve the positioning accuracy. The simulation results show that, compared with the traditional multipath fingerprinting algorithm, the proposed algorithm has better performance even in the case of low Signal-to-Noise Ratio (SNR). -
表 1 系統(tǒng)仿真參數(shù)設(shè)置
仿真參數(shù) 參數(shù)值 OFDM子載波數(shù)目 K = 16 ULA陣元數(shù)目M 4/6/8/10/12 信號帶寬Bw (MHz) 5/10/20 SP算法中每次快拍的采樣數(shù) Ns = 8 SP算法中數(shù)據(jù)點(diǎn)的快拍數(shù) Ld = 50 SP算法中測試點(diǎn)的快拍數(shù) Lt = 20 下載: 導(dǎo)出CSV
-
KOOPMAN P and WAGNER M. Autonomous vehicle safety: An interdisciplinary challenge[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(1): 90–96. doi: 10.1109/MITS.2016.2583491 MOLINA-MASEGOSA R and GOZALVEZ J. LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications[J]. IEEE Vehicular Technology Magazine, 2017, 12(4): 30–39. doi: 10.1109/MVT.2017.2752798 LI Linjing, LI Xin, CHENG Changjian, et al. Research collaboration and ITS topic evolution: 10 years at T-ITS[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 517–523. doi: 10.1109/TITS.2010.2059070 SHI Yanjun, PAN Yaohui, ZHANG Zihui, et al. A 5G-V2X based collaborative motion planning for autonomous industrial vehicles at road intersections[C]. 2018 IEEE International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan, 2018: 3744–3748. LUO Guiyang, YUAN Quan, ZHOU Haibo, et al. Cooperative vehicular content distribution in edge computing assisted 5G-VANET[J]. China Communications, 2018, 15(7): 1–17. doi: 10.1109/CC.2018.8424578 CHEN Xiaozhi, MA Huimin, WAN Ji, et al. Multi-view 3D object detection network for autonomous driving[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6526–6534. XIAO Yunqiu and REN Dakai. A hierarchical decision architecture for network-assisted automatic driving[C]. 2018 IEEE International Conference on Energy Internet, Beijing, China 2018: 35–37. 段建民, 楊晨, 石慧. 基于Pure Pursuit算法的智能車路徑跟蹤[J]. 北京工業(yè)大學(xué)學(xué)報, 2016, 42(9): 1301–1306.DUAN Jianmin, YANG Chen, and SHI Hui. Path tracking based on pure pursuit algorithm for intelligent vehicles[J]. Journal of Beijing University of Technology, 2016, 42(9): 1301–1306. 李儼, 曹一卿, 陳書平, 等. 5G與車聯(lián)網(wǎng)——基于移動通信的車聯(lián)網(wǎng)技術(shù)與智能網(wǎng)聯(lián)汽車[M]. 北京: 電子工業(yè)出版社, 2019. 王慶, 張小國. 車輛組合定位與導(dǎo)航系統(tǒng)——理論、方法及應(yīng)用[M]. 北京: 科學(xué)出版社, 2016. ZHANG Rui, XIA Weiwei, YAN Feng, et al. A single-site positioning method based on TOA and DOA estimation using virtual stations in NLOS environment[J]. China Communications, 2019, 16(2): 146–159. WANG Zhenyu, ZHENG Jun, WU Yuying, et al. A centrality-based RSU deployment approach for vehicular ad hoc networks[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–5. GABER A and OMAR A. A study of wireless indoor positioning based on joint TDOA and DOA estimation using 2-D matrix pencil algorithms and IEEE 802.11ac[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2440–2454. doi: 10.1109/TWC.2014.2386869 AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716–723. doi: 10.1109/TAC.1974.1100705 FASCISTA A, CICCARESE G, COLUCCIA A, et al. A localization algorithm based on V2I communications and AOA estimation[J]. IEEE Signal Processing Letters, 2017, 24(1): 126–130. doi: 10.1109/LSP.2016.2639098 ZHANG Dian, LIU Yunhuai, GUO Xiaonan, et al. On distinguishing the multiple radio paths in RSS-based ranging[C]. 2012 Proceedings IEEE INFOCOM. Orlando, USA, 2012: 2201–2209. 黃銚, 張?zhí)祢U, 高清山, 等. 一種提高無跡卡爾曼濾波精確度的方法[J]. 計算機(jī)仿真, 2010, 27(3): 348–352. doi: 10.3969/j.issn.1006-9348.2010.03.085HUANG Yao, ZHANG Tianqi, GAO Qingshan, et al. A method improving the accuracy of UKF[J]. Computer Simulation, 2010, 27(3): 348–352. doi: 10.3969/j.issn.1006-9348.2010.03.085 KUPERSHTEIN E, WAX M, and COHEN I. Single-site emitter localization via multipath fingerprinting[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 10–21. doi: 10.1109/TSP.2012.2222395 -