一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于特征通道和空間聯合注意機制的遮擋行人檢測方法

陳勇 劉曦 劉煥淋

陳勇, 劉曦, 劉煥淋. 基于特征通道和空間聯合注意機制的遮擋行人檢測方法[J]. 電子與信息學報, 2020, 42(6): 1486-1493. doi: 10.11999/JEIT190606
引用本文: 陳勇, 劉曦, 劉煥淋. 基于特征通道和空間聯合注意機制的遮擋行人檢測方法[J]. 電子與信息學報, 2020, 42(6): 1486-1493. doi: 10.11999/JEIT190606
Yong CHEN, Xi LIU, Huanlin LIU. Occluded Pedestrian Detection Based on Joint Attention Mechanism of Channel-wise and Spatial Information[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1486-1493. doi: 10.11999/JEIT190606
Citation: Yong CHEN, Xi LIU, Huanlin LIU. Occluded Pedestrian Detection Based on Joint Attention Mechanism of Channel-wise and Spatial Information[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1486-1493. doi: 10.11999/JEIT190606

基于特征通道和空間聯合注意機制的遮擋行人檢測方法

doi: 10.11999/JEIT190606 cstr: 32379.14.JEIT190606
基金項目: 國家自然科學基金(51977021)
詳細信息
    作者簡介:

    陳勇:男,1963年生,博士,教授,研究方向為圖像處理

    劉曦:男,1993年生,碩士生,研究方向為行人目標檢測

    劉煥淋:女,1970年生,博士,教授,研究方向為信號處理等方面的研究

    通訊作者:

    陳勇 chenyong@cqupt.edu.cn

  • 中圖分類號: TN911.73; TP391.41

Occluded Pedestrian Detection Based on Joint Attention Mechanism of Channel-wise and Spatial Information

Funds: The National Natural Science Foundation of China (51977021)
  • 摘要:

    遮擋是行人檢測任務中導致漏檢發(fā)生的主要原因之一,對檢測器性能造成了不利影響。為了增強檢測器對于遮擋行人目標的檢測能力,該文提出一種基于特征引導注意機制的單級行人檢測方法。首先,設計一種特征引導注意模塊,在保持特征通道間的關聯性的同時保留了特征圖的空間信息,引導模型關注遮擋目標可視區(qū)域;然后,通過注意模塊融合淺層和深層特征,從而提取到行人的高層語義特征;最后,將行人檢測作為一種高層語義特征檢測問題,通過激活圖的形式預測得到行人位置和尺度,并生成最終的預測邊界框,避免了基于先驗框的預測方式所帶來的額外參數設置。所提方法在CityPersons數據集上進行了測試,并在Caltech數據集上進行了跨數據集實驗。結果表明該方法對于遮擋目標檢測準確度優(yōu)于其他對比算法。同時該方法實現了較快的檢測速度,取得了檢測準確度和速度的平衡。

  • 圖  1  模型總體結構

    圖  2  注意模塊總體結構

    圖  3  特征通道注意模塊結構

    圖  4  空間關注模塊

    圖  5  行人解析網絡

    圖  6  可視化位置預測熱圖

    圖  7  Caltech跨數據庫實驗

    表  1  驗證實驗條件設置

    R (Reasonable)HO (Heavy Occlusion)R+HO (Reasonable+Heavy Occlusion)
    $v \in [0.65,\infty )$$v \in [0.20,0.65]$$v \in [0.20,\infty )$
    下載: 導出CSV

    表  2  注意網絡驗證結果MR–2(%)

    方法RHOR+HO
    文獻[16]16.056.738.2
    Baseline12.141.138.1
    Baseline+CA11.839.237.8
    Baseline+CA+SA11.638.537.3
    下載: 導出CSV

    表  3  CityPersons數據集測試結果MR-2(%)

    方法主干網絡ReasonableHeavyPartialBare測試時間(s)
    OR-CNN[11]VGG-1612.855.715.36.7
    FasterRCNN[21]VGG-1615.4
    ALFNet[8]ResNet-5012.051.911.48.40.27
    CSP[9]ResNet-5011.049.310.47.30.33
    CAFL[13]ResNet-5011.450.412.17.6
    PedJointNet[14]ResNet-5013.552.1
    TLL[20]ResNet-5015.553.617.210.0
    RepLoss[23]ResNet-5013.256.916.87.6
    本文方法ResNet-5011.647.69.87.50.22
    下載: 導出CSV
  • 張功國, 吳建, 易億, 等. 基于集成卷積神經網絡的交通標志識別[J]. 重慶郵電大學學報: 自然科學版, 2019, 31(4): 571–577. doi: 10.3979/j.issn.1673-825X.2019.04.019

    ZHANG Gongguo, WU Jian, YI Yi, et al. Traffic sign recognition based on ensemble convolutional neural network[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2019, 31(4): 571–577. doi: 10.3979/j.issn.1673-825X.2019.04.019
    種衍文, 匡湖林, 李清泉. 一種基于多特征和機器學習的分級行人檢測方法[J]. 自動化學報, 2012, 38(3): 375–381. doi: 10.3724/SP.J.1004.2012.00375

    CHONG Yanwen, KUANG Hulin, and LI Qingquan. Two-stage pedestrian detection based on multiple features and machine learning[J]. Acta Automatica Sinica, 2012, 38(3): 375–381. doi: 10.3724/SP.J.1004.2012.00375
    劉威, 段成偉, 遇冰, 等. 基于后驗HOG特征的多姿態(tài)行人檢測[J]. 電子學報, 2015, 43(2): 217–224. doi: 10.3969/j.issn.0372-2112.2015.02.002

    LIU Wei, DUAN Chengwei, YU Bing, et al. Multi-pose pedestrian detection based on posterior HOG feature[J]. Acta Electronica Sinica, 2015, 43(2): 217–224. doi: 10.3969/j.issn.0372-2112.2015.02.002
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. 2015 Advances in Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    LI Jianan, LIANG Xiaodan, SHEN Shengmei, et al. Scale-aware fast R-CNN for pedestrian detection[J]. IEEE Transactions on Multimedia, 2018, 20(4): 985–996. doi: 10.1109/TMM.2017.2759508
    王進, 陳知良, 李航, 等. 一種基于增量式超網絡的多標簽分類方法[J]. 重慶郵電大學學報: 自然科學版, 2019, 31(4): 538–549. doi: 10.3979/j.issn.1673-825X.2019.04.015

    WANG Jin, CHEN Zhiliang, LI Hang, et al. Hierarchical multi-label classification using incremental hypernetwork[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2019, 31(4): 538–549. doi: 10.3979/j.issn.1673-825X.2019.04.015
    GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    LIU Wei, LIAO Shengcai, HU Weidong, et al. Learning efficient single-stage pedestrian detectors by asymptotic localization fitting[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 618–634.
    LIU Wei, LIAO Shengcai, REN Weiqiang, et al. High-level semantic feature detection: A new perspective for pedestrian detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5182–5191.
    ZHANG Shanshan, BENENSON R, OMRAN M, et al. How far are we from solving pedestrian detection?[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1259–1267.
    ZHANG Shifeng, WEN Longyin, BIAN Xiao, et al. Occlusion-aware R-CNN: detecting pedestrians in a crowd[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 637–653.
    OUYANG Wanli, ZHOU Hui, LI Hongsheng, et al. Jointly learning deep features, deformable parts, occlusion and classification for pedestrian detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(8): 1874–1887. doi: 10.1109/TPAMI.2017.2738645
    FEI Chi, LIU Bin, CHEN Zhu, et al. Learning pixel-level and instance-level context-aware features for pedestrian detection in crowds[J]. IEEE Access, 2019, 7: 94944–94953. doi: 10.1109/ACCESS.2019.2928879
    LIN C Y, XIE Hongxia, and ZHENG Hua. PedJointNet: Joint head-shoulder and full body deep network for pedestrian detection[J]. IEEE Access, 2019, 7: 47687–47697. doi: 10.1109/ACCESS.2019.2910201
    ZHANG Shanshan, YANG Jian, and SCHIELE B. Occluded pedestrian detection through guided attention in CNNs[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6995–7003.
    ZHU Chenchen, HE Yihui, and SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 840–849.
    LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
    CHEN Long, ZHANG Hanwang, XIAO Jun, et al. SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6298–6306.
    WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
    SONG Tao, SUN Leiyu, XIE Di, et al. Small-scale pedestrian detection based on topological line localization and temporal feature aggregation[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 536–551.
    ZHANG Shanshan, BENENSON R, and SCHIELE B. Citypersons: A diverse dataset for pedestrian detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4457–4465.
    DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743–761. doi: 10.1109/TPAMI.2011.155
    WANG Xinlong, XIAO Tete, JIANG Yuning, et al. Repulsion loss: Detecting pedestrians in a crowd[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7774–7783.
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  3618
  • HTML全文瀏覽量:  1465
  • PDF下載量:  166
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-08-09
  • 修回日期:  2020-02-18
  • 網絡出版日期:  2020-03-13
  • 刊出日期:  2020-06-22

目錄

    /

    返回文章
    返回