一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于高斯核顯性映射的核歸一化解相關(guān)仿射投影P范數(shù)算法

趙知?jiǎng)?/a>,  陳思佳

趙知?jiǎng)? 陳思佳. 基于高斯核顯性映射的核歸一化解相關(guān)仿射投影P范數(shù)算法[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 1896-1901. doi: 10.11999/JEIT190602
引用本文: 趙知?jiǎng)? 陳思佳. 基于高斯核顯性映射的核歸一化解相關(guān)仿射投影P范數(shù)算法[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 1896-1901. doi: 10.11999/JEIT190602
Zhijin ZHAO, Sijia CHEN. A Kernel Normalization Decorrelated Affine Projection P-norm Algorithm Based on Gaussian Kernel Explicit Mapping[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1896-1901. doi: 10.11999/JEIT190602
Citation: Zhijin ZHAO, Sijia CHEN. A Kernel Normalization Decorrelated Affine Projection P-norm Algorithm Based on Gaussian Kernel Explicit Mapping[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1896-1901. doi: 10.11999/JEIT190602

基于高斯核顯性映射的核歸一化解相關(guān)仿射投影P范數(shù)算法

doi: 10.11999/JEIT190602 cstr: 32379.14.JEIT190602
詳細(xì)信息
    作者簡介:

    趙知?jiǎng)牛号?959生,教授、博士生導(dǎo)師,研究方向?yàn)橥ㄐ判盘?hào)處理

    陳思佳:女,1995生,碩士生,研究方向?yàn)樽赃m應(yīng)信號(hào)處理

    通訊作者:

    趙知?jiǎng)拧?a href="mailto:zhaozj03@hdu.edu.cn">zhaozj03@hdu.edu.cn

  • 中圖分類號(hào): TN911.7

A Kernel Normalization Decorrelated Affine Projection P-norm Algorithm Based on Gaussian Kernel Explicit Mapping

  • 摘要:

    為了降低核仿射投影P范數(shù)(KAPP)算法的計(jì)算量和存儲(chǔ)容量,提高在輸入信號(hào)強(qiáng)相關(guān)時(shí)KAPP算法的收斂速度和穩(wěn)態(tài)性能,該文提出基于高斯核顯性映射的核歸一化解相關(guān)APP(KNDAPP-GKEM)算法。該算法利用歸一化解相關(guān)方法預(yù)先解除輸入信號(hào)的相關(guān)性;利用高斯核顯式映射方法近似得到顯式核函數(shù),消除了對(duì)歷史數(shù)據(jù)的依賴,解決了KAPP算法因結(jié)構(gòu)不斷生長導(dǎo)致的計(jì)算量和存儲(chǔ)容量過大的問題。α穩(wěn)定分布噪聲背景下的非線性系統(tǒng)辨識(shí)仿真結(jié)果表明,在輸入信號(hào)強(qiáng)相關(guān)時(shí)KNDAPP-GKEM算法收斂速度快,非線性系統(tǒng)辨識(shí)穩(wěn)態(tài)均方誤差小,訓(xùn)練所需時(shí)間呈線性緩慢增長,有利于實(shí)際非線性系統(tǒng)辨識(shí)的應(yīng)用。

  • 圖  1  非線性系統(tǒng)辨識(shí)框圖

    圖  2  維度D對(duì)KNDAPP-GKEM算法性能影響

    圖  3  核參數(shù)h對(duì)KNDAPP-GKEM算法的性能影響

    圖  4  $\alpha $穩(wěn)定分布噪聲背景下3種算法性能比較

    圖  5  不同噪聲強(qiáng)度下KNDAPP-GKEM算法性能

    表  1  KNDAPP-GKEM算法在n時(shí)刻的計(jì)算復(fù)雜度

    迭代步驟乘法運(yùn)算次數(shù)加法運(yùn)算次數(shù)計(jì)算復(fù)雜度
    映射得到$\varphi ({{x}}(n)$DL+DDLDO(1)
    歸一化計(jì)算${{{Z}}_{\rm{N}}}(n)$2K3+3DK2+2D2K3DK2+2D2K+2K3D2–2DK–3K2 O(K3)
    計(jì)算y(n), e(n)和ep(n)DK +KDKO(K)
    更新權(quán)重${{w}}{\rm{(}}n{\rm{)}}$DK+D+1DKO(K)
    下載: 導(dǎo)出CSV
  • OZEKI K and UMEDA T. An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties[J]. Electronics and Communications in Japan, 1984, 67(5): 19–27. doi: 10.1002/ecja.4400670503
    王世元, 史春芬, 蔣云翔, 等. 基于q梯度的仿射投影算法及其穩(wěn)態(tài)均方收斂分析[J]. 電子與信息學(xué)報(bào), 2018, 40(10): 2402–2407. doi: 10.11999/JEIT171125

    WANG Shiyuan, SHI Chunfen, JIANG Yunxiang, et al. Q-affine projection algorithm and its steady-state mean square convergence analysis[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2402–2407. doi: 10.11999/JEIT171125
    王蘭, 楊育紅, 李良山. 解相關(guān)變階仿射投影窄帶干擾抑制算法[J]. 信息工程大學(xué)學(xué)報(bào), 2016, 17(3): 266–269, 280. doi: 10.3969/j.issn.1671-0673.2016.03.003

    WANG Lan, YANG Yuhong, and LI Liangshan. Decorrelating affine projection algorithm with variable order for narrowband interference suppression[J]. Journal of Information Engineering University, 2016, 17(3): 266–269, 280. doi: 10.3969/j.issn.1671-0673.2016.03.003
    LIU Weifeng, PRíNCIPE J C, and HAYKIN S. Kernel Adaptive Filtering: A Comprehensive Introduction[M]. Hoboken, USA: Wiley, 2010: 69–93.
    李群生, 趙剡, 寇磊, 等. 一種基于多尺度核學(xué)習(xí)的仿射投影濾波算法[J]. 電子與信息學(xué)報(bào), 2020, 42(4): 924–931. doi: 10.11999/JEIT190023

    LI Qunsheng, ZHAO Yan, KOU Lei, et al. An affine projection algorithm with multi-scale kernels learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 924–931. doi: 10.11999/JEIT190023
    邱天爽, 張旭秀, 李小兵, 等. 統(tǒng)計(jì)信號(hào)處理: 非高斯信號(hào)處理及其應(yīng)用[M]. 北京: 電子工業(yè)出版社, 2004: 131–171.

    QIU Tianshuang, ZHANG Xuxiu, LI Xiaobin, et al. Statistical Signal Processing: Non-Gauss Signal Processing and Its Application[M]. Beijing: Electronics Industry Press, 2004: 131–171.
    金明明. 核自適應(yīng)濾波算法研究[D]. [碩士論文], 杭州電子科技大學(xué), 2017: 48–54.

    JIN Mingming. The research on kernel adaptive filtering algorithms[D]. [Master dissertation], Hangzhou Dianzi University, 2017: 48–54.
    劉勇, 江沙里, 廖士中. 基于近似高斯核顯式描述的大規(guī)模SVM求解[J]. 計(jì)算機(jī)研究與發(fā)展, 2014, 51(10): 2171–2177. doi: 10.7544/issn1000-1239.2014.20130825

    LIU Yong, JIANG Shali, and LIAO Shizhong. Approximate gaussian kernel for large-scale SVM[J]. Journal of Computer Research and Development, 2014, 51(10): 2171–2177. doi: 10.7544/issn1000-1239.2014.20130825
    RAHIMI A and RECHT B. Uniform approximation of functions with random bases[C]. Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, USA, 2008: 555–561. doi: 10.1109/ALLERTON.2008.4797607.
    BOROUMAND M and FRIDRICH J. Applications of explicit non-linear feature maps in steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(4): 823–833. doi: 10.1109/TIFS.2017.2766580
    HU Zhen, LIN Ming, and ZHANG Changshui. Dependent online kernel learning with constant number of random fourier features[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2464–2476. doi: 10.1109/TNNLS.2014.2387313
    SHARMA M, JAYADEVA, SOMAN S, et al. Large-scale minimal complexity machines using explicit feature maps[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(10): 2653–2662. doi: 10.1109/TSMC.2017.2694321
    王迎旭. 基于隨機(jī)特征的多核分布式協(xié)同模糊聚類算法研究[D]. [碩士論文], 濟(jì)南大學(xué), 2019: 21–65.

    WANG Yingxu. Research of random feature based multiple kernel collaborative fuzzy clustering method in P2P distributed network[D]. [Master dissertation], University of Jinan, 2019: 21–65.
    LIU Yuqi, SUN Chao, and JIANG Shouda. A kernel least mean square algorithm based on randomized feature networks[J]. Applied Sciences, 2018, 8(3): 458. doi: 10.3390/app8030458
    王永德, 王軍. 隨機(jī)信號(hào)分析基礎(chǔ)[M]. 3版. 北京: 電子工業(yè)出版社, 2009: 11.

    WANG Yongde and WANG Jun. Fundamentals of Random Signal Analysis[M]. 3rd ed. Beijing: Electronic Industry Press, 2009: 11.
  • 加載中
圖(5) / 表(1)
計(jì)量
  • 文章訪問數(shù):  1737
  • HTML全文瀏覽量:  705
  • PDF下載量:  50
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-08-08
  • 修回日期:  2020-04-30
  • 網(wǎng)絡(luò)出版日期:  2020-05-15
  • 刊出日期:  2020-08-18

目錄

    /

    返回文章
    返回