基于高斯核顯性映射的核歸一化解相關(guān)仿射投影P范數(shù)算法
doi: 10.11999/JEIT190602 cstr: 32379.14.JEIT190602
-
1.
杭州電子科技大學(xué)通信工程學(xué)院 杭州 310018
-
2.
中國電子科技集團(tuán)第36研究所通信系統(tǒng)信息控制技術(shù)國家級(jí)重點(diǎn)實(shí)驗(yàn)室 嘉興 314001
A Kernel Normalization Decorrelated Affine Projection P-norm Algorithm Based on Gaussian Kernel Explicit Mapping
-
1.
School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
-
2.
State Key Laboratory of Information Control Technology in Communication System, The 36th Research Institute of China Electronics Technology Group Corporation, Jiaxing 314001, China
-
摘要:
為了降低核仿射投影P范數(shù)(KAPP)算法的計(jì)算量和存儲(chǔ)容量,提高在輸入信號(hào)強(qiáng)相關(guān)時(shí)KAPP算法的收斂速度和穩(wěn)態(tài)性能,該文提出基于高斯核顯性映射的核歸一化解相關(guān)APP(KNDAPP-GKEM)算法。該算法利用歸一化解相關(guān)方法預(yù)先解除輸入信號(hào)的相關(guān)性;利用高斯核顯式映射方法近似得到顯式核函數(shù),消除了對(duì)歷史數(shù)據(jù)的依賴,解決了KAPP算法因結(jié)構(gòu)不斷生長導(dǎo)致的計(jì)算量和存儲(chǔ)容量過大的問題。α穩(wěn)定分布噪聲背景下的非線性系統(tǒng)辨識(shí)仿真結(jié)果表明,在輸入信號(hào)強(qiáng)相關(guān)時(shí)KNDAPP-GKEM算法收斂速度快,非線性系統(tǒng)辨識(shí)穩(wěn)態(tài)均方誤差小,訓(xùn)練所需時(shí)間呈線性緩慢增長,有利于實(shí)際非線性系統(tǒng)辨識(shí)的應(yīng)用。
-
關(guān)鍵詞:
- 信號(hào)處理 /
- 核仿射投影P范數(shù) /
- 相關(guān)性 /
- 高斯核顯性映射 /
- α穩(wěn)定分布 /
- 非線性系統(tǒng)辨識(shí)
Abstract:In order to reduce the computation complexity and storage capacity of the Kernel Affine Projection P-norm (KAPP) algorithm, and improve the convergence rate and steady-state performance of the algorithm when the input signal is strongly correlated, a Kernel Normalization Decorrelated Affine Projection P-norm algorithm based on Gaussian Kernel Explicit Mapping (KNDAPP-GKEM) is proposed. The correlation of the input signal is eliminated in advance by the normalized correlation method. The explicit kernel function is approximated by Gaussian kernel explicit mapping method, which eliminates the dependence on historical data and solves the problem that the computation and storage capacity of the KAPP algorithm are too high due to the continuous growth of structure. The simulation results of nonlinear system identification under α-stable distribution noise environment show that when the training data scale is large, the KNDAPP-GKEM algorithm still maintains a fast convergence rate and the low identification mean square error of nonlinear system. Moreover, its training time is linearly and slowly increased, which is more conducive to the practical application of nonlinear system identification.
-
表 1 KNDAPP-GKEM算法在n時(shí)刻的計(jì)算復(fù)雜度
迭代步驟 乘法運(yùn)算次數(shù) 加法運(yùn)算次數(shù) 計(jì)算復(fù)雜度 映射得到$\varphi ({{x}}(n)$ DL+D DL–D O(1) 歸一化計(jì)算${{{Z}}_{\rm{N}}}(n)$ 2K3+3DK2+2D2K 3DK2+2D2K+2K3–D2–2DK–3K2 O(K3) 計(jì)算y(n), e(n)和ep(n) DK +K DK O(K) 更新權(quán)重${{w}}{\rm{(}}n{\rm{)}}$ DK+D+1 DK O(K) 下載: 導(dǎo)出CSV
-
OZEKI K and UMEDA T. An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties[J]. Electronics and Communications in Japan, 1984, 67(5): 19–27. doi: 10.1002/ecja.4400670503 王世元, 史春芬, 蔣云翔, 等. 基于q梯度的仿射投影算法及其穩(wěn)態(tài)均方收斂分析[J]. 電子與信息學(xué)報(bào), 2018, 40(10): 2402–2407. doi: 10.11999/JEIT171125WANG Shiyuan, SHI Chunfen, JIANG Yunxiang, et al. Q-affine projection algorithm and its steady-state mean square convergence analysis[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2402–2407. doi: 10.11999/JEIT171125 王蘭, 楊育紅, 李良山. 解相關(guān)變階仿射投影窄帶干擾抑制算法[J]. 信息工程大學(xué)學(xué)報(bào), 2016, 17(3): 266–269, 280. doi: 10.3969/j.issn.1671-0673.2016.03.003WANG Lan, YANG Yuhong, and LI Liangshan. Decorrelating affine projection algorithm with variable order for narrowband interference suppression[J]. Journal of Information Engineering University, 2016, 17(3): 266–269, 280. doi: 10.3969/j.issn.1671-0673.2016.03.003 LIU Weifeng, PRíNCIPE J C, and HAYKIN S. Kernel Adaptive Filtering: A Comprehensive Introduction[M]. Hoboken, USA: Wiley, 2010: 69–93. 李群生, 趙剡, 寇磊, 等. 一種基于多尺度核學(xué)習(xí)的仿射投影濾波算法[J]. 電子與信息學(xué)報(bào), 2020, 42(4): 924–931. doi: 10.11999/JEIT190023LI Qunsheng, ZHAO Yan, KOU Lei, et al. An affine projection algorithm with multi-scale kernels learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 924–931. doi: 10.11999/JEIT190023 邱天爽, 張旭秀, 李小兵, 等. 統(tǒng)計(jì)信號(hào)處理: 非高斯信號(hào)處理及其應(yīng)用[M]. 北京: 電子工業(yè)出版社, 2004: 131–171.QIU Tianshuang, ZHANG Xuxiu, LI Xiaobin, et al. Statistical Signal Processing: Non-Gauss Signal Processing and Its Application[M]. Beijing: Electronics Industry Press, 2004: 131–171. 金明明. 核自適應(yīng)濾波算法研究[D]. [碩士論文], 杭州電子科技大學(xué), 2017: 48–54.JIN Mingming. The research on kernel adaptive filtering algorithms[D]. [Master dissertation], Hangzhou Dianzi University, 2017: 48–54. 劉勇, 江沙里, 廖士中. 基于近似高斯核顯式描述的大規(guī)模SVM求解[J]. 計(jì)算機(jī)研究與發(fā)展, 2014, 51(10): 2171–2177. doi: 10.7544/issn1000-1239.2014.20130825LIU Yong, JIANG Shali, and LIAO Shizhong. Approximate gaussian kernel for large-scale SVM[J]. Journal of Computer Research and Development, 2014, 51(10): 2171–2177. doi: 10.7544/issn1000-1239.2014.20130825 RAHIMI A and RECHT B. Uniform approximation of functions with random bases[C]. Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, USA, 2008: 555–561. doi: 10.1109/ALLERTON.2008.4797607. BOROUMAND M and FRIDRICH J. Applications of explicit non-linear feature maps in steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(4): 823–833. doi: 10.1109/TIFS.2017.2766580 HU Zhen, LIN Ming, and ZHANG Changshui. Dependent online kernel learning with constant number of random fourier features[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2464–2476. doi: 10.1109/TNNLS.2014.2387313 SHARMA M, JAYADEVA, SOMAN S, et al. Large-scale minimal complexity machines using explicit feature maps[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(10): 2653–2662. doi: 10.1109/TSMC.2017.2694321 王迎旭. 基于隨機(jī)特征的多核分布式協(xié)同模糊聚類算法研究[D]. [碩士論文], 濟(jì)南大學(xué), 2019: 21–65.WANG Yingxu. Research of random feature based multiple kernel collaborative fuzzy clustering method in P2P distributed network[D]. [Master dissertation], University of Jinan, 2019: 21–65. LIU Yuqi, SUN Chao, and JIANG Shouda. A kernel least mean square algorithm based on randomized feature networks[J]. Applied Sciences, 2018, 8(3): 458. doi: 10.3390/app8030458 王永德, 王軍. 隨機(jī)信號(hào)分析基礎(chǔ)[M]. 3版. 北京: 電子工業(yè)出版社, 2009: 11.WANG Yongde and WANG Jun. Fundamentals of Random Signal Analysis[M]. 3rd ed. Beijing: Electronic Industry Press, 2009: 11. -