基于深度學(xué)習(xí)的車(chē)聯(lián)邊緣網(wǎng)絡(luò)交通事故風(fēng)險(xiǎn)預(yù)測(cè)算法研究
doi: 10.11999/JEIT190595 cstr: 32379.14.JEIT190595
-
1.
教育部泛在網(wǎng)絡(luò)健康服務(wù)系統(tǒng)工程研究中心 南京 210003
-
2.
江蘇省無(wú)線(xiàn)通信重點(diǎn)實(shí)驗(yàn)室 南京 210003
-
3.
南京郵電大學(xué)通信與信息工程學(xué)院 南京 210003
Research on Traffic Accident Risk Prediction Algorithm of Edge Internet of Vehicles Based on Deep Learning
-
1.
Ministry of Education Ubiquitous Network Health Service System Engineering Research Center, Nanjing 210003, China
-
2.
Jiangsu Key Wireless Communication Laboratory, Nanjing 210003, China
-
3.
College of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
-
摘要: 針對(duì)傳統(tǒng)交通事故風(fēng)險(xiǎn)預(yù)測(cè)算法無(wú)法自動(dòng)判別數(shù)據(jù)特征,且模型表達(dá)能力差等問(wèn)題。該文提出一種基于深度學(xué)習(xí)的車(chē)聯(lián)邊緣網(wǎng)絡(luò)交通事故風(fēng)險(xiǎn)預(yù)測(cè)算法,該算法首先針對(duì)車(chē)載自組織網(wǎng)絡(luò)中采集的大量交通數(shù)據(jù),采用邊緣服務(wù)器中建立的卷積神經(jīng)網(wǎng)絡(luò)自主提取多維特征,經(jīng)歸一化、去均值等預(yù)處理后,再將得到的新變量輸入卷積層、采樣層進(jìn)行訓(xùn)練,最后根據(jù)全連接層輸出的判別值,得到模擬預(yù)測(cè)交通事故發(fā)生的風(fēng)險(xiǎn)性。仿真結(jié)果表明,該算法被驗(yàn)證能夠預(yù)測(cè)交通事故發(fā)生的風(fēng)險(xiǎn)性,較傳統(tǒng)的機(jī)器學(xué)習(xí)算法BP神經(jīng)網(wǎng)絡(luò)、邏輯回歸具有更低的損失與更高的預(yù)測(cè)準(zhǔn)確度。
-
關(guān)鍵詞:
- 車(chē)聯(lián)邊緣網(wǎng)絡(luò) /
- 機(jī)器學(xué)習(xí) /
- 卷積神經(jīng)網(wǎng)絡(luò) /
- 邊緣服務(wù)器
Abstract: For the problem that the traditional traffic accident risk prediction algorithm can not automatically discriminate data features, and the model expression ability is poor, a traffic accident risk prediction algorithm based on deep learning is proposed. The algorithm firstly extracts multi-dimensional features by using the convolutional neural network established in the edge server for a large amount of traffic data collected in the edge network of vehicles. After normalization, de-equalization and other pre-processing, the new variables are input into the convolutional layer and the pooling layer for training. Finally, based on the output discrimination value of the fully connected layer, the risk of traffic accidents can be predicted by simulation. The simulation results show that the algorithm is validated to predict the risk of traffic accidents, and has lower loss and higher prediction accuracy than the traditional machine learning BP neural network algorithm and Logical Regression algorithm.-
Key words:
- Edge network of vehicles /
- Machine learning /
- Convolutional neural network /
- Edge server
-
GOTHANE S and SARODE M V. Analyzing factors, construction of dataset, estimating Importance of factor, and generation of association rules for Indian road accident[C]. The 6th IEEE International Conference on Advanced Computing, Bhimavaram, India, 2016: 15–18. doi: 10.1109/IACC.2016.13. IKRAM N and MAHAJAN S. Road accidents: Overview of its causes, avoidance scheme and a new proposed technique for avoidance[C]. The 3rd International Conference on Computing for Sustainable Global Development, New Delhi, India, 2016: 497–499. LIN Lei, WANG Qian, and SADEK A W. Data mining and complex network algorithms for traffic accident analysis[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2460(1): 128–136. doi: 10.3141/2460-14 ZONG Fang, CHEN Xiangru, TANG Jinjun, et al. Analyzing traffic crash severity with combination of information entropy and Bayesian network[J]. IEEE Access, 2019, 7: 63288–63302. doi: 10.1109/ACCESS.2019.2916691 GHOSH B, ASIF M T, and DAUWELS J. Bayesian prediction of the duration of non-recurring road incidents[C]. 2016 IEEE Region 10 Conference, Singapore, 2016: 87–90. doi: 10.1109/TENCON.2016.7847964. 秦利燕, 邵春福, 趙亮. 道路交通事故宏觀預(yù)測(cè)模型[J]. 武漢理工大學(xué)學(xué)報(bào): 交通科學(xué)與工程版, 2010, 34(1): 154–157. doi: 10.3963/j.issn.1006-2823.2010.01.038QIN Liyan, SHAO Chunfu, and ZHAO Liang. Macro prediction model of road traffic accident based on neural network[J]. Journal of Wuhan University of Technology:Transportation Science &Engineering, 2010, 34(1): 154–157. doi: 10.3963/j.issn.1006-2823.2010.01.038 TAO Lu, ZHU Dunyao, YAN Linxin, et al. The traffic accident hotspot prediction: Based on the logistic regression method[C]. 2015 International Conference on Transportation Information and Safety, Wuhan, China, 2015: 107–110. doi: 10.1109/ICTIS.2015.7232194. OLUTAYO V A and ELUDIRE A A. Traffic accident analysis using decision trees and neural networks[J]. International Journal of Information Technology and Computer Science, 2014, 6(2): 22–28. doi: 10.5815/ijitcs.2014.02.03 YU B, WANG Y T, YAO J B, et al. A comparison of the performance of ANN and SVM for the prediction of traffic accident duration[J]. Neural Network World, 2016, 26(3): 271–287. doi: 10.14311/NNW.2016.26.015 ZHAO Haitao, MAO Tianqi, DUAN Jiaxiu, et al. FMCNN: A factorization machine combined neural network for driving safety prediction in vehicular communication[J]. IEEE Access, 2019, 7: 11698–11706. doi: 10.1109/ACCESS.2019.2891619 ZHANG Jian, LI Zhibin, PU Ziyuan, et al. Comparing prediction performance for crash injury severity among various machine learning and statistical methods[J]. IEEE Access, 2018, 6: 60079–60087. doi: 10.1109/ACCESS.2018.2874979 XU Jinlai, PALANISAMY B, LUDWIG H, et al. Zenith: Utility-aware resource allocation for edge computing[C]. 2017 IEEE International Conference on Edge Computing, Honolulu, USA, 2017: 47–54. doi: 10.1109/IEEE.EDGE.2017.15. ZHENG Yang, WANG Jianqiang, LI Xiaofei, et al. Driving risk assessment using cluster analysis based on naturalistic driving data[C]. The 17th IEEE International Conference on Intelligent Transportation Systems, Qingdao, China, 2014: 2584–2589. doi: 10.1109/ITSC.2014.6958104. CHEN Yuanfang, SHU Lei, and WANG Lei. Poster abstract: Traffic flow prediction with big data: A deep learning based time series model[C]. 2017 IEEE Conference on Computer Communications Workshops, Atlanta, USA, 2017: 1010–1011. doi: 10.1109/INFCOMW.2017.8116535. 梁曉萍, 郭振軍, 朱昌洪. 基于頭腦風(fēng)暴優(yōu)化算法的BP神經(jīng)網(wǎng)絡(luò)模糊圖像復(fù)原[J]. 電子與信息學(xué)報(bào), 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261LIANG Xiaoping, GUO Zhenjun, and ZHU Changhong. BP neural network fuzzy image restoration based on brainstorm optimization algorithm[J]. Journal of Electronics and Information Technology, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261 殷禮勝, 唐圣期, 李勝, 等. 基于整合移動(dòng)平均自回歸和遺傳粒子群優(yōu)化小波神經(jīng)網(wǎng)絡(luò)組合模型的交通流預(yù)測(cè)[J]. 電子與信息學(xué)報(bào), 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073YIN Lisheng, TANG Shengqi, LI Sheng, et al. Traffic flow prediction based on hybrid model of auto-regressive integrated moving average and genetic particle swarm optimization wavelet neural network[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073 -