一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

基于深度學(xué)習(xí)的車(chē)聯(lián)邊緣網(wǎng)絡(luò)交通事故風(fēng)險(xiǎn)預(yù)測(cè)算法研究

趙海濤 程慧玲 丁儀 張暉 朱洪波

趙海濤, 程慧玲, 丁儀, 張暉, 朱洪波. 基于深度學(xué)習(xí)的車(chē)聯(lián)邊緣網(wǎng)絡(luò)交通事故風(fēng)險(xiǎn)預(yù)測(cè)算法研究[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 50-57. doi: 10.11999/JEIT190595
引用本文: 趙海濤, 程慧玲, 丁儀, 張暉, 朱洪波. 基于深度學(xué)習(xí)的車(chē)聯(lián)邊緣網(wǎng)絡(luò)交通事故風(fēng)險(xiǎn)預(yù)測(cè)算法研究[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 50-57. doi: 10.11999/JEIT190595
Haitao ZHAO, Huiling CHENG, Yi DING, Hui ZHANG, Hongbo ZHU. Research on Traffic Accident Risk Prediction Algorithm of Edge Internet of Vehicles Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2020, 42(1): 50-57. doi: 10.11999/JEIT190595
Citation: Haitao ZHAO, Huiling CHENG, Yi DING, Hui ZHANG, Hongbo ZHU. Research on Traffic Accident Risk Prediction Algorithm of Edge Internet of Vehicles Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2020, 42(1): 50-57. doi: 10.11999/JEIT190595

基于深度學(xué)習(xí)的車(chē)聯(lián)邊緣網(wǎng)絡(luò)交通事故風(fēng)險(xiǎn)預(yù)測(cè)算法研究

doi: 10.11999/JEIT190595 cstr: 32379.14.JEIT190595
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61771252),江蘇省自然科學(xué)基金(BK20171444),江蘇省高校重點(diǎn)自然科學(xué)研究重大項(xiàng)目(18KJA510005),江蘇省“六大人才高峰”B類(lèi)資助項(xiàng)目(DZXX-041),江蘇省科協(xié)青年科技人才托舉工程資助培養(yǎng)項(xiàng)目,江蘇省研究生科研創(chuàng)新計(jì)劃項(xiàng)目(KYCX19_0949)
詳細(xì)信息
    作者簡(jiǎn)介:

    趙海濤:男,1983年生,博士,副教授,研究方向?yàn)槲锫?lián)網(wǎng)與移動(dòng)邊緣計(jì)算

    程慧玲:女,1995年生,碩士生,研究方向?yàn)橐苿?dòng)邊緣計(jì)算與人工智能

    丁儀:女,1995年生,碩士生,研究方向?yàn)槲锫?lián)網(wǎng)路由優(yōu)化和邊緣計(jì)算

    張暉:男,1982年生,博士,副教授,研究方向?yàn)槲磥?lái)無(wú)線(xiàn)網(wǎng)絡(luò)

    朱洪波:男,1956年生,博士,教授,研究方向?yàn)橐苿?dòng)通信與寬帶無(wú)線(xiàn)技術(shù)、無(wú)線(xiàn)通信與電磁兼容

    通訊作者:

    趙海濤 zhaoht@njupt.edu.cn

  • 中圖分類(lèi)號(hào): TP399

Research on Traffic Accident Risk Prediction Algorithm of Edge Internet of Vehicles Based on Deep Learning

Funds: The National Natural Science Foundation of China (61771252), The Natural Science Foundation Project of Jiangsu Province (BK20171444), The Jiangsu Province University Natural Science Research Major Project (18KJA510005), “The Six talents High Peaks” Class B Funding Project of Jiangsu Province (DZXX-041), The Jiangsu Provincial Association for Science and Technology Talents Entrustment Project, Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_0949)
  • 摘要: 針對(duì)傳統(tǒng)交通事故風(fēng)險(xiǎn)預(yù)測(cè)算法無(wú)法自動(dòng)判別數(shù)據(jù)特征,且模型表達(dá)能力差等問(wèn)題。該文提出一種基于深度學(xué)習(xí)的車(chē)聯(lián)邊緣網(wǎng)絡(luò)交通事故風(fēng)險(xiǎn)預(yù)測(cè)算法,該算法首先針對(duì)車(chē)載自組織網(wǎng)絡(luò)中采集的大量交通數(shù)據(jù),采用邊緣服務(wù)器中建立的卷積神經(jīng)網(wǎng)絡(luò)自主提取多維特征,經(jīng)歸一化、去均值等預(yù)處理后,再將得到的新變量輸入卷積層、采樣層進(jìn)行訓(xùn)練,最后根據(jù)全連接層輸出的判別值,得到模擬預(yù)測(cè)交通事故發(fā)生的風(fēng)險(xiǎn)性。仿真結(jié)果表明,該算法被驗(yàn)證能夠預(yù)測(cè)交通事故發(fā)生的風(fēng)險(xiǎn)性,較傳統(tǒng)的機(jī)器學(xué)習(xí)算法BP神經(jīng)網(wǎng)絡(luò)、邏輯回歸具有更低的損失與更高的預(yù)測(cè)準(zhǔn)確度。
  • 圖  1  輸入層具有3個(gè)神經(jīng)元的感知機(jī)建模圖

    圖  2  含有多層隱含層的卷積神經(jīng)網(wǎng)絡(luò)交通事故風(fēng)險(xiǎn)預(yù)測(cè)建模圖

    圖  3  車(chē)聯(lián)邊緣網(wǎng)絡(luò)系統(tǒng)架構(gòu)圖

    圖  4  交通事故風(fēng)險(xiǎn)預(yù)測(cè)算法流程圖

    圖  5  卷積神經(jīng)網(wǎng)絡(luò)與BP神經(jīng)網(wǎng)絡(luò)、邏輯回歸預(yù)測(cè)損失對(duì)比圖

    圖  6  卷積神經(jīng)網(wǎng)絡(luò)較BP神經(jīng)網(wǎng)絡(luò)、邏輯回歸預(yù)測(cè)準(zhǔn)確度對(duì)比圖

    圖  7  不同激活函數(shù)對(duì)卷積、BP神經(jīng)網(wǎng)絡(luò)、邏輯回歸算法預(yù)測(cè)損失的影響對(duì)比圖

    圖  8  不同激活函數(shù)對(duì)卷積、BP神經(jīng)網(wǎng)絡(luò)、邏輯回歸算法預(yù)測(cè)準(zhǔn)確度的影響對(duì)比圖

  • GOTHANE S and SARODE M V. Analyzing factors, construction of dataset, estimating Importance of factor, and generation of association rules for Indian road accident[C]. The 6th IEEE International Conference on Advanced Computing, Bhimavaram, India, 2016: 15–18. doi: 10.1109/IACC.2016.13.
    IKRAM N and MAHAJAN S. Road accidents: Overview of its causes, avoidance scheme and a new proposed technique for avoidance[C]. The 3rd International Conference on Computing for Sustainable Global Development, New Delhi, India, 2016: 497–499.
    LIN Lei, WANG Qian, and SADEK A W. Data mining and complex network algorithms for traffic accident analysis[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2460(1): 128–136. doi: 10.3141/2460-14
    ZONG Fang, CHEN Xiangru, TANG Jinjun, et al. Analyzing traffic crash severity with combination of information entropy and Bayesian network[J]. IEEE Access, 2019, 7: 63288–63302. doi: 10.1109/ACCESS.2019.2916691
    GHOSH B, ASIF M T, and DAUWELS J. Bayesian prediction of the duration of non-recurring road incidents[C]. 2016 IEEE Region 10 Conference, Singapore, 2016: 87–90. doi: 10.1109/TENCON.2016.7847964.
    秦利燕, 邵春福, 趙亮. 道路交通事故宏觀預(yù)測(cè)模型[J]. 武漢理工大學(xué)學(xué)報(bào): 交通科學(xué)與工程版, 2010, 34(1): 154–157. doi: 10.3963/j.issn.1006-2823.2010.01.038

    QIN Liyan, SHAO Chunfu, and ZHAO Liang. Macro prediction model of road traffic accident based on neural network[J]. Journal of Wuhan University of Technology:Transportation Science &Engineering, 2010, 34(1): 154–157. doi: 10.3963/j.issn.1006-2823.2010.01.038
    TAO Lu, ZHU Dunyao, YAN Linxin, et al. The traffic accident hotspot prediction: Based on the logistic regression method[C]. 2015 International Conference on Transportation Information and Safety, Wuhan, China, 2015: 107–110. doi: 10.1109/ICTIS.2015.7232194.
    OLUTAYO V A and ELUDIRE A A. Traffic accident analysis using decision trees and neural networks[J]. International Journal of Information Technology and Computer Science, 2014, 6(2): 22–28. doi: 10.5815/ijitcs.2014.02.03
    YU B, WANG Y T, YAO J B, et al. A comparison of the performance of ANN and SVM for the prediction of traffic accident duration[J]. Neural Network World, 2016, 26(3): 271–287. doi: 10.14311/NNW.2016.26.015
    ZHAO Haitao, MAO Tianqi, DUAN Jiaxiu, et al. FMCNN: A factorization machine combined neural network for driving safety prediction in vehicular communication[J]. IEEE Access, 2019, 7: 11698–11706. doi: 10.1109/ACCESS.2019.2891619
    ZHANG Jian, LI Zhibin, PU Ziyuan, et al. Comparing prediction performance for crash injury severity among various machine learning and statistical methods[J]. IEEE Access, 2018, 6: 60079–60087. doi: 10.1109/ACCESS.2018.2874979
    XU Jinlai, PALANISAMY B, LUDWIG H, et al. Zenith: Utility-aware resource allocation for edge computing[C]. 2017 IEEE International Conference on Edge Computing, Honolulu, USA, 2017: 47–54. doi: 10.1109/IEEE.EDGE.2017.15.
    ZHENG Yang, WANG Jianqiang, LI Xiaofei, et al. Driving risk assessment using cluster analysis based on naturalistic driving data[C]. The 17th IEEE International Conference on Intelligent Transportation Systems, Qingdao, China, 2014: 2584–2589. doi: 10.1109/ITSC.2014.6958104.
    CHEN Yuanfang, SHU Lei, and WANG Lei. Poster abstract: Traffic flow prediction with big data: A deep learning based time series model[C]. 2017 IEEE Conference on Computer Communications Workshops, Atlanta, USA, 2017: 1010–1011. doi: 10.1109/INFCOMW.2017.8116535.
    梁曉萍, 郭振軍, 朱昌洪. 基于頭腦風(fēng)暴優(yōu)化算法的BP神經(jīng)網(wǎng)絡(luò)模糊圖像復(fù)原[J]. 電子與信息學(xué)報(bào), 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261

    LIANG Xiaoping, GUO Zhenjun, and ZHU Changhong. BP neural network fuzzy image restoration based on brainstorm optimization algorithm[J]. Journal of Electronics and Information Technology, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261
    殷禮勝, 唐圣期, 李勝, 等. 基于整合移動(dòng)平均自回歸和遺傳粒子群優(yōu)化小波神經(jīng)網(wǎng)絡(luò)組合模型的交通流預(yù)測(cè)[J]. 電子與信息學(xué)報(bào), 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073

    YIN Lisheng, TANG Shengqi, LI Sheng, et al. Traffic flow prediction based on hybrid model of auto-regressive integrated moving average and genetic particle swarm optimization wavelet neural network[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073
  • 加載中
圖(8)
計(jì)量
  • 文章訪(fǎng)問(wèn)數(shù):  3694
  • HTML全文瀏覽量:  1506
  • PDF下載量:  212
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-08-06
  • 修回日期:  2019-11-05
  • 網(wǎng)絡(luò)出版日期:  2019-11-13
  • 刊出日期:  2020-01-21

目錄

    /

    返回文章
    返回