融合時空上下文信息的胸環(huán)靶著彈檢測算法
doi: 10.11999/JEIT190585 cstr: 32379.14.JEIT190585
-
大連理工大學信息與通信工程學院 大連 116024
Detection Algorithm of Chest Bitmap Based on Spatio-temporal Context Information
-
School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China
-
摘要:
為減小光照不均與隨機抖動對胸環(huán)靶著彈檢測精度的影響,該文提出一種融合時空上下文信息的胸環(huán)靶著彈檢測算法。利用目標及其鄰域的空間上下文信息進行光照均衡化,并提取胸環(huán)靶序列間時域運動上下文信息進行抖動校正。為提高胸環(huán)靶圖像的穩(wěn)定性,該算法提出多參數(shù)融合方法對抖動校正后的序列圖像進行像素級融合。接著進行彈孔區(qū)域粗提取、能量篩選與重疊彈孔判別,獲得彈孔位置分布。采用在部隊靶場實地采集的圖像進行實驗,驗證了該算法可以有效抑制光照不均與隨機抖動帶來的噪聲影響,具有較好的彈孔提取能力。
-
關鍵詞:
- 圖像處理 /
- 檢測算法 /
- 時空上下文信息 /
- 多參數(shù)融合
Abstract:A detection algorithm based on spatio-temporal context information is proposed to reduce the influence of non-uniform illumination and random jitter on the accuracy of target hole detection. The light equalization is carried out by using the spatial context information of target and its neighborhood, and the temporal motion context information between chest bitmap sequences is extracted for dithering correction. In order to improve the stability of chest bitmaps, a multi-parameter fusion method is proposed to perform pixel-level fusion of jitter corrected sequence images. Then, rough extraction of bullet hole area, energy screening and overlapping bullet holes discrimination are carried out to obtain the location distribution of bullet holes. The experimental results show that the algorithm can effectively suppress the noise caused by non-uniform illumination and random jitter, and has great ability of bullet hole extraction.
-
表 1 IQA參數(shù)比較
${\mu _1}$(mean) ${\mu _2}$(std) ${\mu _3}$(grad) SSEQ 0.1 0.4 0.5 49.7565 0.2 0.3 0.5 50.7473 0.3 0.2 0.5 50.5672 0.4 0.1 0.5 49.4026 0.1 0.3 0.6 49.2834 0.2 0.2 0.6 50.0364 0.3 0.1 0.6 49.9368 0.1 0.2 0.7 49.2470 0.2 0.1 0.7 49.3499 0.1 0.1 0.8 48.9924 下載: 導出CSV
表 3 彈孔中心坐標位置偏差與檢測效率
序號 真值 檢測結果 $(|\Delta x|,|\Delta y|)$ $\sqrt {\Delta {x^2} + \Delta {y^2}} $ 檢測效率(s) 1 (206,725) (206.50,725.00) (0.50,0) 0.50 0.7413 2 (460,297) (459.63,297.50) (0.37,0.50) 0.62 0.7744 3 (267,541) (266.35,542.24) (0.65,1.24) 1.40 0.8000 4 (436,456) (436.77,457.13) (0.77,1.13) 1.37 0.7711 5 (733,626) (733.00,626.49) (0,0.49) 0.49 0.7656 6 (685,891) (686.50,888.50) (1.50,2.50) 2.92 0.7711 7 (797,915) (796.50,915.50) (0.50,0.50) 0.71 0.7586 8 (573,821) (573.00,819.50) (0,1.50) 1.50 0.7843 9 (700,758) (699.00,758.00) (1.00,0) 1.00 0.7946 10 (760,711) (760.13,710.32) (0.13,0.68) 0.69 0.8425 下載: 導出CSV
-
苑瑋琦, 李夢祺. 基于視覺檢測的胸環(huán)靶自動報靶系統(tǒng)研究[J]. 計算機技術與發(fā)展, 2019, 29(2): 147–151. doi: 10.3969/j.issn.1673-629X.2019.02.031YUAN Weiqi and LI Mengqi. Research on target of automatic scoring system based on visual inspection[J]. Computer Technology and Development, 2019, 29(2): 147–151. doi: 10.3969/j.issn.1673-629X.2019.02.031 羅杰, 張之明. 基于圖像處理技術自動報靶系統(tǒng)綜述[J]. 激光雜志, 2016, 37(7): 1–6. doi: 10.14016/j.cnki.jgzz.2016.07.001LUO Jie and ZHANG Zhiming. Survey on automatic target-scoring system based on image processing technology[J]. Laser Journal, 2016, 37(7): 1–6. doi: 10.14016/j.cnki.jgzz.2016.07.001 尹乾. 基于圖像處理技術的自動報靶系統(tǒng)研究[D]. [碩士論文], 重慶大學, 2017: 37–45.YIN Qian. Study on automatic target scoring based on image processing technology[D]. [Master dissertation], Chongqing University, 2017: 37–45. WIDAYAKA P D, KUSUMA H, and ATTAMIMI M. Automatic shooting scoring system based on image processing[J]. Journal of Physics: Conference Series, 2019, 1201: 012047. doi: 10.1088/1742-6596/1201/1/012047 余梓. 基于圖像處理技術的彈孔定位系統(tǒng)研究[D]. [碩士論文], 哈爾濱理工大學, 2016: 27–40.YU Zi. Study on bullet hole positioning system based on image processing technology[D]. [Master dissertation], Harbin University of Science and Technology, 2016: 27–40. 周友行, 周健, 鄧渝波, 等. 基于邊緣特征與HSI色彩特征的胸環(huán)靶彈孔識別[J]. 計算機工程與應用, 2015, 51(24): 190–194. doi: 10.3778/j.issn.1002-8331.1312-0221ZHOU Youhang, ZHOU Jian, DENG Yubo, et al. Chest bitmap bullet identification based on edge feature and HSI color feature[J]. Computer Engineering and Applications, 2015, 51(24): 190–194. doi: 10.3778/j.issn.1002-8331.1312-0221 徐建強, 陸耀. 一種基于加權時空上下文的魯棒視覺跟蹤算法[J]. 自動化學報, 2015, 41(11): 1901–1912. doi: 10.16383/j.aas.2015.c150073XU Jianqiang and LU Yao. Robust visual tracking via weighted spatio-temporal context learning[J]. Acta Automatica Sinica, 2015, 41(11): 1901–1912. doi: 10.16383/j.aas.2015.c150073 程新. 基于同態(tài)濾波的圖像增強算法研究[D]. [碩士論文], 西安郵電大學, 2016: 33–40.CHENG Xin. Image enhancement algorithm based on homomorphic filtering[D]. [Master dissertation], Xi’an University of Posts & Telecommunications, 2016: 33–40. TIAN Qichong and COHEN L D. Global and local contrast adaptive enhancement for non-uniform illumination color images[C]. 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), Venice, Italy, 2017: 3023–3030. doi: 10.1109/ICCVW.2017.357. 魏閃閃, 謝巍, 賀志強. 數(shù)字視頻穩(wěn)像技術綜述[J]. 計算機研究與發(fā)展, 2017, 54(9): 2044–2058. doi: 10.7544/issn1000-1239.2017.20160078WEI Shanshan, XIE Wei, and HE Zhiqiang. Digital video stabilization techniques: A survey[J]. Journal of Computer Research and Development, 2017, 54(9): 2044–2058. doi: 10.7544/issn1000-1239.2017.20160078 胡瑞卿, 田杰榮. 基于光流法的運動目標檢測算法研究[J]. 電子世界, 2019(5): 58–61. doi: 10.19353/j.cnki.dzsj.2019.05.031HU Ruiqing and TIAN Jierong. Research on moving target detection algorithm based on optical flow method[J]. Electronics World, 2019(5): 58–61. doi: 10.19353/j.cnki.dzsj.2019.05.031 田偉, 柏方超. 基于特征點的KLT實時目標跟蹤算法實現(xiàn)[J]. 光電技術應用, 2019, 34(1): 31–34. doi: 10.3969/j.issn.1673-1255.2019.01.007TIAN Wei and BAI Fangchao. Implementation of KLT target tracking algorithm feature point-based[J]. Electro-Optic Technology Application, 2019, 34(1): 31–34. doi: 10.3969/j.issn.1673-1255.2019.01.007 王喆. 多聚焦圖像像素級融合算法研究[D]. [碩士論文], 鄭州大學, 2018: 15–30.WANG Zhe. Research on pixel-level fusion algorithms for multi-focus image[D]. [Master dissertation], Zhengzhou University, 2018: 15–30. GOH T Y, BASAH S N, YAZID H, et al. Performance analysis of image thresholding: Otsu technique[J]. Measurement, 2018, 114: 298–307. doi: 10.1016/j.measurement.2017.09.052 LIU Lixiong, LIU Bao, HUANG Hua, et al. No-reference image quality assessment based on spatial and spectral entropies[J]. Signal Processing: Image Communication, 2014, 29(8): 856–863. doi: 10.1016/j.image.2014.06.006 -