一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一種基于深度學習的自適應醫(yī)學超聲圖像去斑方法

付曉薇 楊雪飛 陳芳 李曦

付曉薇, 楊雪飛, 陳芳, 李曦. 一種基于深度學習的自適應醫(yī)學超聲圖像去斑方法[J]. 電子與信息學報, 2020, 42(7): 1782-1789. doi: 10.11999/JEIT190580
引用本文: 付曉薇, 楊雪飛, 陳芳, 李曦. 一種基于深度學習的自適應醫(yī)學超聲圖像去斑方法[J]. 電子與信息學報, 2020, 42(7): 1782-1789. doi: 10.11999/JEIT190580
Xiaowei FU, Xuefei YANG, Fang CHEN, Xi LI. An Adaptive Medical Ultrasound Images Despeckling Method Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1782-1789. doi: 10.11999/JEIT190580
Citation: Xiaowei FU, Xuefei YANG, Fang CHEN, Xi LI. An Adaptive Medical Ultrasound Images Despeckling Method Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1782-1789. doi: 10.11999/JEIT190580

一種基于深度學習的自適應醫(yī)學超聲圖像去斑方法

doi: 10.11999/JEIT190580 cstr: 32379.14.JEIT190580
基金項目: 國家自然科學基金(61873323),材料成形與模具技術國家重點實驗室開放課題研究基金(P2018-016),湖北省自然科學基金(2017CFB506),智能信息處理與實時工業(yè)系統(tǒng)湖北省重點實驗室開放課題項目(2016znss02A, znxx2018ZD01),大學生科技創(chuàng)新基金項目(18ZRA076)
詳細信息
    作者簡介:

    付曉薇:女,1977年生,教授,研究方向為圖像處理、計算機視覺、信號處理與分析

    楊雪飛:女,1994年生,碩士生,研究方向為圖像處理、深度學習

    陳芳:女,1972年生,研究方向為肌骨超聲圖像的調節(jié)

    李曦:男,1977年生,教授,研究方向為計算機應用,復雜非線性系統(tǒng)的建模和控制

    通訊作者:

    付曉薇 fxw_wh0409@wust.edu.cn

  • 中圖分類號: TN911.73

An Adaptive Medical Ultrasound Images Despeckling Method Based on Deep Learning

Funds: The National Natural Science Foundation of China (61873323), The Open Fund Project of State Key Laboratory of Material Processing and Die & Mould Technology (P2018-016), The Natural Science Foundation of Hubei Provincial (2017CFB506), The Open Fund Project of Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System (2016znss02A, znxx2018ZD01), The University Student Science and Technology Innovation Fund Project (18ZRA076)
  • 摘要:

    針對傳統(tǒng)醫(yī)學超聲圖像去斑方法的不足,該文提出一種自適應多曝光融合框架和前饋卷積神經網絡模型圖像去斑方法。首先,制作超聲圖像訓練數(shù)據集;然后,提出一種自適應增強因子的多曝光融合框架,增強圖像進行有效特征提??;最后,通過網絡訓練去斑模型并獲得去斑后的圖像。實驗結果表明,該文較已有的方法,能更有效地濾除醫(yī)學超聲圖像中的斑點噪聲并更多的保留圖像細節(jié)。

  • 圖  1  殘差網絡的基本結構

    圖  2  本文流程圖

    圖  3  網絡結構圖

    圖  4  模擬斑點肝臟超聲圖像1實驗比較

    圖  5  模擬斑點肝臟超聲圖像2實驗比較

    圖  6  真實醫(yī)學超聲圖像去斑后結果比較

    表  1  模擬斑點肝臟超聲圖像1不同方法PSNR結果(dB)

    方法斑點噪聲的標準差σ
    0.50.60.70.80.9
    BI-DTCWT35.422533.846132.536831.426530.3688
    NPSM34.582732.957331.536630.325029.2056
    NL-means34.928934.193433.355432.565831.6134
    BM3D36.170135.755235.248534.895134.2035
    Local_entropy_qsp36.781236.108335.436335.072634.5014
    DnCNN35.770135.839435.818035.676935.3885
    本文方法36.720336.713936.602536.356835.9492
    下載: 導出CSV

    表  4  模擬斑點肝臟超聲圖像2不同方法$\beta $結果

    方法斑點噪聲的標準差σ
    0.50.60.70.80.9
    BI-DTCWT0.70780.63590.56120.50990.4661
    NPSM0.68300.61970.54790.49900.4517
    NL-means0.71910.67610.60370.54490.4899
    BM3D0.80300.79500.78260.76830.7355
    Local_entropy_qsp0.82630.80900.77870.75670.7384
    DnCNN0.92860.92380.91560.90290.8812
    本文方法0.93940.93250.92170.96530.8836
    下載: 導出CSV

    表  2  模擬斑點肝臟超聲圖像2不同方法PSNR結果(dB)

    方法斑點噪聲的標準差σ
    0.50.60.70.80.9
    BI-DTCWT31.047729.540928.085627.434226.2056
    NPSM31.537430.098528.674527.669926.6843
    NL-means32.736031.753930.486029.510528.4174
    BM3D33.878633.309632.543632.019931.2079
    Local_entropy_qsp34.315733.242632.170631.532930.8599
    DnCNN34.976035.038234.849734.385133.6562
    本文方法35.928035.917035.628935.030134.1677
    下載: 導出CSV

    表  3  模擬斑點肝臟超聲圖像1不同方法$\beta $結果

    方法斑點噪聲的標準差σ
    0.50.60.70.80.9
    BI-DTCWT0.64160.56110.48230.42910.3846
    NPSM0.59720.51540.43520.38170.3393
    NL-means0.45220.41020.35640.32620.2949
    BM3D0.59690.58200.56850.54770.5016
    Local_entropy_qsp0.65400.62870.59910.58420.5621
    DnCNN0.78030.77260.75950.73930.7106
    本文方法0.81280.80110.78310.75640.7208
    下載: 導出CSV

    表  5  真實斑點超聲圖像不同方法ENL結果

    方法ENL等效視數(shù)值
    BI-DTCWT61.2209
    NPSM64.6016
    NL-means109.5584
    BM3D93.4877
    Local_entropy_qsp79.1016
    DnCNN132.9184
    本文方法134.3287
    下載: 導出CSV

    表  6  50張真實斑點超聲圖像不同方法ENL平均值比較

    方法ENL等效視數(shù)值平均值
    BI-DTCWT75.5182
    NPSM75.5941
    NL-means110.6393
    BM3D110.9127
    Local_entropy_qsp93.7911
    DnCNN140.3622
    本文方法147.0689
    下載: 導出CSV
  • KANAYAMA Y and YANO M. Ultrasound diagnosis apparatus and ultrasound imaging method[P]. USA Patent, 10231710, 2019.
    ZHOU Yingyue, ZANG Hongbin, XU Su, et al. An iterative speckle filtering algorithm for ultrasound images based on bayesian nonlocal means filter model[J]. Biomedical Signal Processing and Control, 2019, 48: 104–117. doi: 10.1016/j.bspc.2018.09.011
    JOEL T and SIVAKUMAR R. An extensive review on Despeckling of medical ultrasound images using various transformation techniques[J]. Applied Acoustics, 2018, 138: 18–27. doi: 10.1016/j.apacoust.2018.03.023
    沈民奮, 陳婷婷, 張瓊, 等. 醫(yī)用超聲圖像散斑去噪方法綜述[J]. 中國醫(yī)療器械信息, 2013, 19(3): 17–22. doi: 10.3969/j.issn.1006-6586.2013.03.003

    SHEN Minfen, CHEN Tingting, ZHANG Qiong, et al. The review of speckle denoising in medical ultrasound imaging[J]. China Medical Device Information, 2013, 19(3): 17–22. doi: 10.3969/j.issn.1006-6586.2013.03.003
    KUAN D, SAWCHUK A, STRAND T, et al. Adaptive restoration of images with speckle[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(3): 373–383. doi: 10.1109/TASSP.1987.1165131
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238
    肖佳, 張俊華, 梅禮曄. 改進的三維塊匹配去噪算法[J]. 計算機科學, 2019, 46(6): 288–294. doi: 10.11896/j.issn.1002-137X.2019.06.043

    XIAO Jia, ZHANG Junhua, and MEI Liye. Improved block-matching 3D denoising algorithm[J]. Computer Science, 2019, 46(6): 288–294. doi: 10.11896/j.issn.1002-137X.2019.06.043
    PERONA P and MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629–639. doi: 10.1109/34.56205
    YU Yongjian and ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260–1270. doi: 10.1109/TIP.2002.804276
    TIAN Jing and CHEN Li. Image despeckling using a non-parametric statistical model of wavelet coefficients[J]. Biomedical Signal Processing and Control, 2011, 6(4): 432–437. doi: 10.1016/j.bspc.2010.11.006
    SENDUR L and SELESNICK I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J]. IEEE Transactions on Signal Processing, 2002, 50(11): 2744–2756. doi: 10.1109/TSP.2002.804091
    BURGER H C, SCHULER C J, and HARMELING S. Image denoising: Can plain neural networks compete with BM3D?[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2392–2399.
    SCHMIDT U and ROTH S. Shrinkage fields for effective image restoration[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2774–2781.
    CHEN Yunjin and POCK T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1256–1272. doi: 10.1109/TPAMI.2016.2596743
    MAO Xiaojiao, SHEN Chunhua, and YANG Yubin. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]. Advances in Neural Information Processing Systems, Red Hook, USA, 2016: 2802–2810.
    ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
    NADEEM M, HUSSAIN A, and MUNIR A. Fuzzy logic based computational model for speckle noise removal in ultrasound images[J]. Multimedia Tools and Applications, 2019, 78(9): 18531–18548.
    呂曉琪, 吳涼, 谷宇, 等. 基于深度卷積神經網絡的低劑量CT肺部去噪[J]. 電子與信息學報, 2018, 40(6): 1353–1359. doi: 10.11999/JEIT170769

    Lü Xiaoqi, WU Liang, GU Yu, et al. Low dose CT lung denoising model based on deep convolution neural network[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1353–1359. doi: 10.11999/JEIT170769
    YING Zhenqiang, LI Ge, REN Yurui, et al. A new image contrast enhancement algorithm using exposure fusion framework[C]. The 17th International Conference on Computer Analysis of Images and Patterns, Ystad, Sweden, 2017: 36–46.
    ZHENG D, WANG J, and XIAO Z. Image enhancement based on local standard deviation[J]. Journal of Information and Computational Science, 2005, 2(2): 429–437.
    JIFARA W, JIANG Feng, RHO S, et al. Medical image denoising using convolutional neural network: A residual learning approach[J]. The Journal of Supercomputing, 2019, 75(2): 704–718. doi: 10.1007/s11227-017-2080-0
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv, 2014, 1409.1556.
    VEDALDI A and LENC K. MatconvNet: Convolutional neural networks for MATLAB[C]. The 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 689–692.
    FU Xiaowei, WANG Yi, CHEN Li, et al. An image despeckling approach using quantum-inspired statistics in dual-tree complex wavelet domain[J]. Biomedical Signal Processing and Control, 2015, 18: 30–35. doi: 10.1016/j.bspc.2014.11.005
    BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65.
    付曉薇, 代蕓, 陳黎, 等. 基于局部熵的量子衍生醫(yī)學超聲圖像去斑[J]. 電子與信息學報, 2015, 37(3): 560–566. doi: 10.11999/JEIT140587

    FU Xiaowei, DAI Wei, CHEN Li, et al. Quantum-inspired despeckling of medical ultrasound images based on local entropy[J]. Journal of Electronics &Information Technology, 2015, 37(3): 560–566. doi: 10.11999/JEIT140587
    PIZURICA A, PHILIPS W, LEMAHIEU I, et al. A versatile wavelet domain noise filtration technique for medical imaging[J]. IEEE Transactions on Medical Imaging, 2003, 22(3): 323–331. doi: 10.1109/TMI.2003.809588
    RODTOOK A and MAKHANOV S S. Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer[J]. Journal of Visual Communication and Image Representation, 2013, 24(8): 1414–1430. doi: 10.1016/j.jvcir.2013.09.009
  • 加載中
圖(6) / 表(6)
計量
  • 文章訪問數(shù):  3777
  • HTML全文瀏覽量:  1586
  • PDF下載量:  169
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-07-31
  • 修回日期:  2020-03-18
  • 網絡出版日期:  2020-04-11
  • 刊出日期:  2020-07-23

目錄

    /

    返回文章
    返回