一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

車聯(lián)網(wǎng)中整合移動(dòng)邊緣計(jì)算與內(nèi)容分發(fā)網(wǎng)絡(luò)的移動(dòng)性管理策略

張海波 程妍 劉開健 賀曉帆

張海波, 程妍, 劉開健, 賀曉帆. 車聯(lián)網(wǎng)中整合移動(dòng)邊緣計(jì)算與內(nèi)容分發(fā)網(wǎng)絡(luò)的移動(dòng)性管理策略[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1444-1451. doi: 10.11999/JEIT190571
引用本文: 張海波, 程妍, 劉開健, 賀曉帆. 車聯(lián)網(wǎng)中整合移動(dòng)邊緣計(jì)算與內(nèi)容分發(fā)網(wǎng)絡(luò)的移動(dòng)性管理策略[J]. 電子與信息學(xué)報(bào), 2020, 42(6): 1444-1451. doi: 10.11999/JEIT190571
Haibo ZHANG, Yan CHENG, Kaijian LIU, Xiaofan HE. The Mobility Management Strategies by Integrating Mobile Edge Computing and CDN in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1444-1451. doi: 10.11999/JEIT190571
Citation: Haibo ZHANG, Yan CHENG, Kaijian LIU, Xiaofan HE. The Mobility Management Strategies by Integrating Mobile Edge Computing and CDN in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1444-1451. doi: 10.11999/JEIT190571

車聯(lián)網(wǎng)中整合移動(dòng)邊緣計(jì)算與內(nèi)容分發(fā)網(wǎng)絡(luò)的移動(dòng)性管理策略

doi: 10.11999/JEIT190571 cstr: 32379.14.JEIT190571
基金項(xiàng)目: 國家自然科學(xué)基金(61801065, 61601071),長江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃基金項(xiàng)目(IRT16R72),重慶市基礎(chǔ)與前沿項(xiàng)目(cstc2018jcyjAX0463)
詳細(xì)信息
    作者簡介:

    張海波:男,1979年生,副教授,研究方向?yàn)闊o線資源管理

    程妍:女,1994年生,碩士生,研究方向?yàn)橐苿?dòng)邊緣計(jì)算

    劉開?。号?,1981年生,講師,研究方向?yàn)樽顑?yōu)化算法

    賀曉帆:男,1985年生,助理教授,研究方向?yàn)闊o線資源優(yōu)化

    通訊作者:

    程妍 2311837009@qq.com

  • 中圖分類號: TN929.5

The Mobility Management Strategies by Integrating Mobile Edge Computing and CDN in Vehicular Networks

Funds: The National Natural Science Foundation of China (61801065, 61601071), The Program for Changjiang Scholars and Innovative Research Team in University (IRT16R72), The General Project on Foundation and Cutting-edge Research Plan of Chongqing (cstc2018jcyjAX0463)
  • 摘要:

    由于車載應(yīng)用的普及和車輛數(shù)量的增加,路邊基礎(chǔ)設(shè)施的物理資源有限,當(dāng)大量車輛接入車聯(lián)網(wǎng)時(shí)能耗與時(shí)延同時(shí)增加,通過整合內(nèi)容分發(fā)網(wǎng)絡(luò)(CDN)和移動(dòng)邊緣計(jì)算(MEC)的框架可以降低時(shí)延與能耗。在車聯(lián)網(wǎng)中,車輛移動(dòng)性對云服務(wù)的連續(xù)性提出了重大挑戰(zhàn)。因此,該文提出了移動(dòng)性管理(MM)來處理該問題。采用開銷選擇的動(dòng)態(tài)信道分配(ODCA)算法避免乒乓效應(yīng)且減少車輛在小區(qū)間的切換時(shí)間。采用基于路邊單元(RSU)調(diào)度的合作博弈算法進(jìn)行虛擬機(jī)遷移并開發(fā)基于學(xué)習(xí)的價(jià)格控制機(jī)制,以有效地處理MEC的計(jì)算資源。仿真結(jié)果表明,所提算法相比于現(xiàn)有的算法能夠提高資源利用率且減少開銷。

  • 圖  1  系統(tǒng)模型圖

    圖  2  基站數(shù)目對切換時(shí)間的影響

    圖  3  車輛用戶的密度對平均時(shí)延的影響

    圖  4  不同負(fù)載大小下總時(shí)延的變化情況

    圖  5  遷移虛擬機(jī)的個(gè)數(shù)和資源利用率之間的關(guān)系

    圖  6  虛擬機(jī)個(gè)數(shù)與服務(wù)失敗率之間的關(guān)系

    表  1  開銷選擇的動(dòng)態(tài)信道分配(ODCA)

     (1) 輸入:${I_{{\rm{dd}}}}$, ${h_i}$, ${h_j}$, $v$, $c$, $\left( {{ X},{ Y}} \right)$
     (2) 輸出:$\left( { {{ X}_{i,j} },{{ Y}_{i,j} } } \right)$, $t_{i,j}^{{\rm{h}} * }$, ${\rm{RS}}{{\rm{U}}^ * }$
     (3) 初始化權(quán)值矩陣$\left( {{ X},{ Y}} \right)$
     (4) $m \leftarrow 0$
     (5) while $m \le {I_{ {\rm{dd} } } }$
     (6) for $j = 1:M$
     (7) L輛車同時(shí)進(jìn)行分布式計(jì)算,每個(gè)連接到RSU的V-UE僅報(bào)
       告未定期使用信道的開銷
     (8) 如果許多用戶同時(shí)改變其信道,可能導(dǎo)致乒乓效應(yīng),RSU
       可通過${a_{i,j,\mathop l\limits^ {\wedge} } } = 1|\mathop l\limits^ {\wedge} = \max \dfrac{ { {p_{i,j,l} }{L_{i,j,l} } } }{ { {\sigma ^2} + {\rm{I} } } }$改變信道
     (9) 根據(jù)式(10)計(jì)算開銷,根據(jù)開銷最小來選擇最優(yōu)、次最優(yōu)、
       次優(yōu)的3個(gè)RSU
     (10) V-UE實(shí)時(shí)上報(bào)其位置信息$\left( {{ X},{ Y}} \right)$和功率損耗門限${P^{{\rm{th}}}}$,
       TCS根據(jù)式(5)計(jì)算切換位置$\left( { {{ X}_{i,j} },{{ Y}_{i,j} } } \right)$
     (11) 根據(jù)$\left( { {{ X}_{i,j} },{{ Y}_{i,j} } } \right)$和式(7)分別計(jì)算切換到3個(gè)RSU的時(shí)間,
       如果能使$t_{i,j}^{\rm{C}}$和$t_{i,j}^{\rm{h}}$最小,此${\rm{RS}}{{\rm{U}}^ * }$性能最優(yōu),且最優(yōu)切換
       時(shí)間為$t_{i,j}^{{\rm{h}} * }$
     (12) endfor
     (13) endwhile
    下載: 導(dǎo)出CSV

    表  2  基于RSU調(diào)度的合作博弈算法

     (1) 輸入:${{S}}$, $\alpha $, $\beta $, ${d_{i,j}}$, ${c_{i,j}}$, ${\rm{RS}}{{\rm{U}}^ * }$, ${I_{{\rm{dd}}}}$
     (2) 輸出:${{A}}$
     (3) 初始化權(quán)值矩陣${{A}}$,${{S}}$
     (4)$m \leftarrow 0$
     (5) while $m \le {I_{ {\rm{dd} } } }$
     (6) for $j = 1:M$
     (7) $L$輛車同時(shí)進(jìn)行分布式計(jì)算,利用梯度下降算法求出最優(yōu)功
       率分配值$p_{i,j,l}^ * $
     (8) 根據(jù)式(14)判斷是否遷移
     (9) 根據(jù)博弈論第2階段計(jì)算出未遷移與遷移的收益
     (10) 根據(jù)行為${a_t}$觀察下一時(shí)刻的狀態(tài)${s_{t + 1}}$
     (11) 根據(jù)式(16)—式(18)出獎(jiǎng)勵(lì)函數(shù),通過不斷地學(xué)習(xí),找到使
       獎(jiǎng)勵(lì)函數(shù)最大的策略
     (12) endfor
     (13) endwhile
    下載: 導(dǎo)出CSV

    表  3  模擬參數(shù)表

    參數(shù)數(shù)值
    輸入數(shù)據(jù)的大小${d_{i,j}}$300~1600 kB
    噪聲功率${\sigma ^2}$0.1~1.0 GHz
    MEC服務(wù)器CPU周期頻率${f^{\rm{C}}}$6 GHz
    最大延遲容限${T^{{\rm{th}}}}$6 s
    迭代次數(shù)${I_{{\rm{dd}}}}$600
    最大傳輸功${P^{{\rm{max}}}}$23 dBm
    傳輸帶寬$W$20 MHz
    任務(wù)執(zhí)行時(shí)所需的CPU周期數(shù)${c_{i,j}}$0.1~1.0 GHz
    下載: 導(dǎo)出CSV
  • ZHOU Siyu, NETALKAR P P, CHANG Yanan, et al. The MEC-based architecture design for low-latency and fast hand-off vehicular networking[C]. The 88th Vehicular Technology Conference, Chicago, USA, 2018: 1–7. doi: 10.1109/VTCFall.2018.8690790.
    BASTUG E, BENNIS M, MEDARD M, et al. Toward interconnected virtual reality: Opportunities, challenges, and enablers[J]. IEEE Communications Magazine, 2017, 55(6): 110–117. doi: 10.1109/MCOM.2017.1601089
    LIN Mengdan and ZHAO Xuelin. Application research of neural network in vehicle target recognition and classification[C]. 2019 International Conference on Intelligent Transportation, Big Data & Smart City, Changsha, China, 2019: 5–8. doi: 10.1109/ICITBS.2019.00010.
    CICIRELLI F, GUERRIERI A, SPEZZANO G, et al. Edge computing and social internet of things for large-scale smart environments development[J]. IEEE Internet of Things Journal, 2018, 5(4): 2557–2571. doi: 10.1109/JIOT.2017.2775739
    YALA L, FRANGOUDIS P A, and KSENTINI A. QoE-aware computing resource allocation for CDN-as-a-service provision[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOM.2016.7842182.
    LIU Jiayi, YANG Qinghai, and SIMON G. Congestion avoidance and load balancing in content placement and request redirection for mobile CDN[J]. IEEE/ACM Transactions on Networking, 2018, 26(2): 851–863. doi: 10.1109/TNET.2018.2804979
    XU Jie, SUN Yuxuan, CHEN Lixing, et al. E2M2: Energy efficient mobility management in dense small cells with mobile edge computing[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7996855.
    PENG Han, RAZI A, AFGHAH F, et al. A unified framework for joint mobility prediction and object profiling of drones in UAV networks[J]. Journal of Communications and Networks, 2018, 20(5): 434–442. doi: 10.1109/JCN.2018.000068
    LIU Fangming, SHU Peng, and LUI J C S. AppATP: An energy conserving adaptive mobile-cloud transmission protocol[J]. IEEE Transactions on Computers, 2015, 64(11): 3051–3063. doi: 10.1109/TC.2015.2401032
    XU Fei, LIU Fangming, LIU Linghui, et al. iAware: Making live migration of virtual machines interference-aware in the cloud[J]. IEEE Transactions on Computers, 2014, 63(12): 3012–3025. doi: 10.1109/TC.2013.185
    CHEN Hongyang, WU Jianming, and SHIMOMURA T. New reference signal design for URLLC and eMBB multiplexing in new radio wireless communications[C]. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, Italy, 2018: 1220–1225. doi: 10.1109/PIMRC.2018.8580882.
    KHAN Z, FAN Pingzhi, ABBAS F, et al. Two-level cluster based routing scheme for 5G V2X communication[J]. IEEE Access, 2019, 7: 16194–16205. doi: 10.1109/ACCESS.2019.2892180
    WANG Chenmeng, YU F R, LIANG Chengchao, et al. Joint computation offloading and interference management in wireless cellular networks with mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7432–7445. doi: 10.1109/TVT.2017.2672701
    JOSHI G, VIG R, and SINGH S. DCA-based unimodal feature-level fusion of orthogonal moments for Indian sign language dataset[J]. IET Computer Vision, 2018, 12(5): 570–577. doi: 10.1049/iet-cvi.2017.0394
    SUN Yuxuan, ZHOU Sheng, and XU Jie. EMM: Energy-aware mobility management for mobile edge computing in ultra dense networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2637–2646. doi: 10.1109/JSAC.2017.2760160
    PLACHY J, BECVAR Z, and STRINATI E C. Dynamic resource allocation exploiting mobility prediction in mobile edge computing[C]. 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Valencia, Spain, 2016: 1–6. doi: 10.1109/PIMRC.2016.7794955.
    CHEN Xiaojing, NI Wei, COLLINGS I B, et al. Automated function placement and online optimization of network functions virtualization[J]. IEEE Transactions on Communications, 2019, 67(2): 1225–1237. doi: 10.1109/TCOMM.2018.2877336
    FRANGOUDIS P A and KSENTINI A. Service migration versus service replication in Multi-access Edge Computing[C]. 2018 14th International Wireless Communications & Mobile Computing Conference, Limassol, Cyprus, 2018: 124–129. doi: 10.1109/IWCMC.2018.8450284.
  • 加載中
圖(6) / 表(3)
計(jì)量
  • 文章訪問數(shù):  4263
  • HTML全文瀏覽量:  1864
  • PDF下載量:  216
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-07-29
  • 修回日期:  2020-02-21
  • 網(wǎng)絡(luò)出版日期:  2020-03-20
  • 刊出日期:  2020-06-22

目錄

    /

    返回文章
    返回