一種目標(biāo)響應(yīng)自適應(yīng)的通道可靠性跟蹤算法
doi: 10.11999/JEIT190569 cstr: 32379.14.JEIT190569
-
1.
西北工業(yè)大學(xué)航海學(xué)院 西安 710072
-
2.
西安工業(yè)大學(xué)電子信息工程學(xué)院 西安 710021
-
3.
海洋聲學(xué)信息感知工業(yè)和信息化部重點(diǎn)實(shí)驗(yàn)室(西北工業(yè)大學(xué)) 西安 710072
-
4.
陜西科技大學(xué)電子信息與人工智能學(xué)院 西安 710021
An Object Tracking Algorithm with Channel Reliability and Target Response Adaptation
-
1.
School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
-
2.
School of Electronic Information Engineering, Xi’an Technological University, Xi’an 710021, China
-
3.
Key Laboratory of Ocean Acoustics and Sensing (Northwestern Polytechnical University), Ministry of Industry and Information Technology, Xi’an 710072, China
-
4.
School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China
-
摘要:
為解決基于時(shí)空正則項(xiàng)的目標(biāo)跟蹤算法(STRCF)在目標(biāo)短時(shí)遮擋時(shí)定位精度低和目標(biāo)旋轉(zhuǎn)時(shí)尺度估計(jì)不準(zhǔn)確的問題,該文提出了一種目標(biāo)響應(yīng)自適應(yīng)的通道可靠性跟蹤算法。該算法在目標(biāo)模型訓(xùn)練時(shí)加入了目標(biāo)響應(yīng)正則項(xiàng),通過在求解過程中更新理想目標(biāo)響應(yīng)函數(shù),使得目標(biāo)被短時(shí)遮擋后可重新跟蹤目標(biāo);加入通道可靠性評價(jià)各特征通道的可靠性,提高了模型對目標(biāo)的表達(dá)能力;將目標(biāo)圖像轉(zhuǎn)換至對數(shù)極坐標(biāo)系下訓(xùn)練尺度濾波器,提高在目標(biāo)旋轉(zhuǎn)時(shí)的尺度估計(jì)精度。實(shí)驗(yàn)結(jié)果表明,該文所提算法較STRCF在平均中心位置誤差中降低了28.54個(gè)像素,在平均重疊率中提高了22.8%,在OTB2015數(shù)據(jù)集下成功率曲線下面積較STRCF提高了1.5%。
-
關(guān)鍵詞:
- 目標(biāo)跟蹤 /
- 相關(guān)濾波 /
- 目標(biāo)響應(yīng)自適應(yīng) /
- 通道可靠性 /
- 尺度濾波
Abstract:In order to solve the problems of lower precision of target location in short-term occlusion and inaccurate of scale estimation of target in rotation by Spatial-Temporal Regularized Correlation Filters (STRCF), an object tracking algorithm with channel reliability and target response adaptation is proposed in this paper. In this algorithm, target response regularization is added to train target model. By updating the ideal target response function in the process of solving model, the target can be tracked again after being occluded for a short time. The reliability of each feature channel is evaluated by coefficient of channel reliability, which can improves the model's expression of the target. Scale filters can be trained in log-polar coordinates to improve the accuracy of scale estimation when target is rotating. The experimental results show that the proposed algorithm reduces 28.54 pixels in the average center position error and improves the average overlap rate by 22.8% compared with STRCF.
-
表 1 視頻序列名稱及屬性
視頻序列名稱 視頻屬性 MountainBike 旋轉(zhuǎn)、背景干擾 Basketball 遮擋、旋轉(zhuǎn)、光照變化、形變、背景干擾 Panda 遮擋、旋轉(zhuǎn)、尺寸變化、形變、
超出視野、低分辨率Girl2 遮擋、旋轉(zhuǎn)、尺寸變化、形變、快速移動(dòng) KiteSurf 遮擋、旋轉(zhuǎn)、光照變化 下載: 導(dǎo)出CSV
表 2 平均中心位置誤差(像素)/平均重疊率
算法名稱 MoutainBike Basketball Panda Girl2 KiteSurf SAMF-AT 8.85/0.67 22.91/0.49 36.15/0.23 99.65/0.35 58.09/0.35 SRDCF 9.30/0.67 10.08/0.57 45.06/0.17 182.33/0.21 59.18/0.35 STRCF 10.42/0.65 14.06/0.36 10.12/0.39 77.86/0.48 66.73/0.36 本文算法 9.98/0.68 6.30/0.75 7.00/0.51 10.51/0.70 2.70/0.74 下載: 導(dǎo)出CSV
-
王旭東, 王屹煒, 閆賀. 背景抑制直方圖模型的連續(xù)自適應(yīng)均值漂移跟蹤算法[J]. 電子與信息學(xué)報(bào), 2019, 41(6): 1480–1487. doi: 10.11999/JEIT180588WANG Xudong, WANG Yiwei, and YAN He. Continuously adaptive mean-shift tracking algorithm with suppressed background histogram model[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1480–1487. doi: 10.11999/JEIT180588 黃立勤, 朱飄. 車載視頻下改進(jìn)的核相關(guān)濾波跟蹤算法[J]. 電子與信息學(xué)報(bào), 2018, 40(8): 1887–1894. doi: 10.11999/JEIT171109HUANG Liqin and ZHU Piao. Improved kernel correlation filtering tracking for vehicle video[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1887–1894. doi: 10.11999/JEIT171109 LI Yang and ZHU Jianke. A scale adaptive kernel correlation filter tracker with feature integration[C]. European Conference on Computer Vision, Zurich, Switzerland, 2014: 254–265. doi: 10.1007/978-3-319-16181-5_18. DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090–1097. doi: 10.1109/CVPR.2014.143. DANELLJAN M, H?GER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]. 2015 International Conference on Computer Vision, Santiago, Chile, 2015: 4310–4318. doi: 10.1109/iccv.2015.490. BIBI A, MUELLER M, and GHANEM B. Target response adaptation for correlation filter tracking[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 419–433. doi: 10.1007/978-3-319-46466-4_25. WANG Ning, ZHOU Wengang, TIAN Qi, et al. Multi-cue correlation filters for robust visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4844–4853.doi: 10.1109/CVPR.2018.00509. TANG Ming, YU Bin, ZHANG Fan, et al. High-speed tracking with multi-kernel correlation filters[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4874–4833. doi: 10.1109/CVPR.2018.00512. CHOI J, CHANG H J, FISCHER T, et al. Context-aware deep feature compression for high-speed visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 479–488. doi: 10.1109/CVPR.2018.00057. LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904–4913. doi: 10.1109/CVPR.2018.00515. BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2544–2550. doi: 10.1109/cvpr.2010.5539960. LUKE?I? A, VOJí? T, ZAJC L C, et al. Discriminative correlation filter tracker with channel and spatial reliability[J]. International Journal of Computer Vision, 2018, 126(7): 671–688. doi: 10.1007/s11263-017-1061-3 LI Yang, ZHU Jianke, HOI S C H, et al. Robust estimation of similarity transformation for visual object tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8666–8673. doi: 10.1609/aaai.v33i01.33018666 WU Yi, LIM J, and YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848. doi: 10.1109/TPAMI.2014.2388226 WU Yi, LIM J, and YANG M H. Online object tracking: A benchmark[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411–2418. doi: 10.1109/CVPR.2013.312. -