基于隨機(jī)平均梯度下降和對比源反演的非線性逆散射算法研究
doi: 10.11999/JEIT190566 cstr: 32379.14.JEIT190566
-
南昌大學(xué)信息工程學(xué)院 南昌 330031
Stochastic Average Gradient Descent Contrast Source Inversion Based Nonlinear Inverse Scattering Method for Complex Objects Reconstruction
-
Institute of Information engineering, Nanchang University, Nanchang 330031, China
-
摘要:
采用非線性對比源反演(CSI)算法求解電磁逆散射問題時(shí),在每次迭代過程中都涉及到求解散射場數(shù)據(jù)關(guān)于對比源和總場的微分,即Jacobi矩陣,該矩陣求解導(dǎo)致算法存在計(jì)算代價(jià)大和收斂速度慢等問題。該文在CSI框架下,采用一種基于隨機(jī)平均梯度下降的對比源反演算法(SAG-CSI)代替原來的全梯度交替共軛梯度算法來重構(gòu)介質(zhì)目標(biāo)介電常數(shù)的空間分布信息。該方法在每次迭代中只需計(jì)算隨機(jī)抽取的部分測量數(shù)據(jù)在目標(biāo)函數(shù)中的梯度信息,同時(shí)目標(biāo)函數(shù)對未抽中的測量數(shù)據(jù)的梯度信息保持不變,用以上兩部分梯度信息共同求解出目標(biāo)函數(shù)的最優(yōu)值。由模擬數(shù)據(jù)結(jié)果表明,該方法與傳統(tǒng)CSI方法在成像精度相比擬的情況下,降低了計(jì)算代價(jià)并提高算法收斂速度。
-
關(guān)鍵詞:
- 非線性電磁場逆散射 /
- 對比源反演 /
- 隨機(jī)平均梯度
Abstract:When using the nonlinear Contrast Source Inversion (CSI) algorithm to solve the electromagnetic inverse scattering problem, each iteration involves finding the differential of the dissolution radiation field data about the contrast source and the total field, i.e., the Jacobi matrix. the solution of the matrix leads to the problem of large computational cost and slow convergence speed of the algorithm. in this paper, a Contrast Source Inversion algorithm based on Stochastic Average Gradient descent (SAG-CSI) is used instead of the original full gradient alternating Conjugate Gradient algorithm to reconstruct the spatial distribution information of the dielectric constant of the dielectric target under the CSI framework. the method only needs to calculate the gradient information of the randomly selected part of the measurement data in the objective function in each iteration, while the objective function keeps the gradient information of the unscented measurement data, and the optimal value of the objective function is solved together with the above two parts of the gradient information. The simulation results show that the proposed method reduces the computational cost and improves the convergence speed of the algorithm when compared with the traditional CSI method.
-
表 1 SAG-CSI算法
輸入:對比源初值:${{{w}}_0}$, 散射場數(shù)據(jù):${{{E}}_{{\rm{sca}}}}$, 測量數(shù)據(jù)的索引:$i \in \left( {1,2, ··· ,N} \right)$, 隨機(jī)抽取數(shù)據(jù)的索引:${i_k} \in \left( {1,2, ··· ,N} \right)$。 輸出:當(dāng)目標(biāo)函數(shù)${{{F}}_n}$達(dá)到設(shè)定誤差值$\delta $或最大迭代次數(shù)${{{N}}_{{\rm{iter}}}}$時(shí),輸出對比度函數(shù):${{{\chi}} _n}$ (1) 計(jì)算格林函數(shù)${{{G}}_{\rm{D}}}$, ${{{G}}_{\rm{R}}}$ (2) 對比度函數(shù)初值${{{\chi}} _0} = 0$, (3) 由前向模型計(jì)算得到對比源初值
${ {{w} }_0} = \dfrac{ {\parallel { {{G} }^H_{\rm R} }{ {{E} }_{\rm sca} }{\parallel ^2} } }{ {\parallel { {{G} }_{\rm R} }{ {{G} }^H{\rm R} }{ {{E} }_{\rm sca} }{\parallel ^2} } }{ {{G} }^H_R}{ {{E} }_{\rm sca} }$ (*為共軛轉(zhuǎn)置) (16)(4) $n \leftarrow 0$(n為迭代次數(shù)) (5) while ${{{F}}_n}\left( {{w_n}} \right) < {{\delta}} $或${{n}} < {N_{{\rm{iter}}}}$ do 步驟 1 ?每次迭代隨機(jī)抽取測量數(shù)據(jù)的索引:${i_k} = {\rm{randperm}}\left( i \right)$ 步驟 2 將步驟1抽取的測量數(shù)據(jù)按照進(jìn)行梯度更新計(jì)算(其中$\rho _{n - 1}^{{i_k}}$, $\gamma _{n - 1}^{{i_k}}$和${\chi _{n - 1}}$分別表示隨機(jī)抽取散射場數(shù)據(jù)的數(shù)據(jù)方程誤差和場誤差以及上次迭代保存的對比度函數(shù))
${{g} }_n^{ {i_k} } = - \frac{ { { {\left( { {{G} }_{\rm{R} }^{ {i_k} } } \right)}^H}\rho _{n - 1}^{ {i_k} } } }{ {\displaystyle\sum\limits_k {\parallel {{E} }_{ {\rm{sca} } }^{ {i_k} }{\parallel ^2} } } } - \frac{ {\gamma _{n - 1}^{ {i_k} } - {{G} }^H_{\rm{D} } { { {{{\chi} } }^* _{n - 1} } } \gamma _{n - 1}^{ {i_k} })} }{ {\displaystyle\sum\limits_k {\parallel { {{\chi} } _{n - 1} }{{E} }_{ {\rm{inc} } }^{ {i_k} }{\parallel ^2} } } }$(*為復(fù)共軛) (17)步驟 3 ?對抽取的散射場數(shù)據(jù)在目標(biāo)函數(shù)中的梯度值進(jìn)行更新,其余散射場數(shù)據(jù)對應(yīng)的梯度不變(其中${\nabla _{{w_n}}}{{F}}_n^i$表示隨機(jī)抽取散射場數(shù)據(jù)在目標(biāo)函數(shù)中關(guān)于對比源的更新梯度值,${{g}}_{n - 1}^{{i_k}}$表示上次迭代該散射場數(shù)據(jù)對應(yīng)的梯度值,${\overline { { {{g} }_{n - 1} } } }$表示所有散射場數(shù)據(jù)在目標(biāo)函數(shù)中的梯度矩陣) ${ { { {{\overline{{g} } } }_n} } } ={ { { { {\overline{{g} } } }_{n - 1} } } } - {{g} }_{n - 1}^{ {i_k} } + { {\text{?} } _{ {w_n} } }{{F} }_n^i$ (18) 將所有測量數(shù)據(jù)構(gòu)成的梯度矩陣$\overline{\overline {{{{g}}_n}}} $求和取平均得出當(dāng)前迭代的梯度${{{g}}_n}$,即搜索方向的反方向。 步驟 4 ?由步驟3所得的搜索方向和式(15)所求得的搜索步長可計(jì)算更新的對比源(上次迭代保存的對比源${{{w}}_{n - 1}}$):${{{w}}_n} \!=\! {{{w}}_{n - 1}} \!-\! {{{\alpha}} _n}{{{g}}_n}$ 步驟 5 ?更新總場的值:${{E}}_{{\rm{tot}}}^n = E_{{\rm{tot}}}^{n - 1} - {{{\alpha }}_n}{{{G}}_{\rm{D}}}{{{g}}_n}$ 步驟 6 ?由對比源作為輔助變量公式可知
${ {{\chi} } _n} = \frac{ {\displaystyle\sum\limits_K { { {{w} }_n} ({ { {{{E} } } }_{ {\rm{tot} } }^n})^* } } }{ {\displaystyle\sum\limits_K { {{E} }_{ {\rm{tot} } }^n ({ {{{E} } }_{ {\rm{tot} } }^n})^* } } }$ (*為復(fù)共軛,K為抽取樣本的總個(gè)數(shù)) (19)步驟 7 ?${{n}} = {{n}} + 1$ (6) end (7) ${{\chi}} = {{{\chi}} _n}$ 下載: 導(dǎo)出CSV
-
LI Lianlin, WANG Longgang, DING Jun, et al. A probabilistic model for the nonlinear electromagnetic inverse scattering: TM case[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(11): 5984–5991. doi: 10.1109/TAP.2017.2751654 KIM S B, VAN ZYL J J, JOHNSON J T, et al. Surface soil moisture retrieval using the l-band synthetic aperture radar onboard the Soil Moisture Active-Passive satellite and evaluation at core validation sites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 1897–1914. doi: 10.1109/TGRS.2016.2631126 WANG Longgang, Li Lianlin, DING Jun, et al. A fast patches-based imaging algorithm for 3-D multistatic imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 941–945. doi: 10.1109/LGRS.2017.2688461 VAN DEN BERG P M and KLEINMAN R E. A contrast source inversion method[J]. Inverse Problems, 1997, 13(6): 1607. doi: 10.1088/0266-5611/13/6/013 POLI L, OLIVERI G, and MASSA A. Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 2865–2879. doi: 10.1109/TAP.2012.2194676 SHEA J D, VAN VEEN B D, and HAGNESS S C. A TSVD analysis of microwave inverse scattering for breast imaging[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(4): 936–945. doi: 10.1109/TBME.2011.2176727 OLIVERI G, ANSELMI N, and MASSA A. Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(10): 5157–5170. doi: 10.1109/TAP.2014.2344673 BEVACQUA M T, CROCCO L, DI DONATO L, et al. Non-linear inverse scattering via sparsity regularized contrast source inversion[J]. IEEE Transactions on Computational Imaging, 2017, 3(2): 296–304. doi: 10.1109/TCI.2017.2675708 CHEN Xudong. Subspace-based optimization method for solving inverse-scattering problems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 42–49. doi: 10.1109/TGRS.2009.2025122 周輝林, 鄭靈輝, 莫仲念, 等. 基于直接采樣法和子空間優(yōu)化法的多介質(zhì)目標(biāo)混合逆散射成像方法[J]. 電子與信息學(xué)報(bào), 2017, 39(3): 758–762. doi: 10.11999/JEIT160534ZHOU Huilin, ZHENG Linghui, MO Zhongnian, et al. DSM-SOM based hybrid inverse scattering method for multiple dielectric objects reconstruction[J]. Journal of Electronics &Information Technology, 2017, 39(3): 758–762. doi: 10.11999/JEIT160534 SONG Xiaoqian, LI Maokun, YANG Fan, et al. Feasibility study of acoustic imaging for human thorax using an acoustic contrast source inversion algorithm[J]. The Journal of the Acoustical Society of America, 2018, 144(5): 2782–2792. doi: 10.1121/1.5078590 GUO Lei and ABBOSH A M. Microwave imaging of nonsparse domains using Born iterative method with wavelet transform and block sparse Bayesian learning[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4877–4888. doi: 10.1109/TAP.2015.2473000 YE Xiuzhu and CHEN Xudong. Subspace-based distorted-Born iterative method for solving inverse scattering problems[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7224–7232. doi: 10.1109/TAP.2017.2766658 ABUBAKAR A, VAN DEN BERG P M, and KOOIJ B J. A conjugate gradient contrast source technique for 3D profile inversion[J]. IEICE Transactions on Electronics, 2000, E83-C(12): 1864–1874. SCHMIDT M, LE ROUX N, and BACH F. Minimizing finite sums with the stochastic average gradient[J]. Mathematical Programming, 2017, 162(1/2): 83–112. doi: 10.1007/s10107-016-1030-6 DOGNIN P and GOEL V. Combining stochastic average gradient and hessian-free optimization for sequence training of deep neural networks[C]. 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. Olomouc: IEEE, 2013: 321–325. -