倒數(shù)粗糙熵圖像閾值化分割算法
doi: 10.11999/JEIT190559 cstr: 32379.14.JEIT190559
-
1.
西安郵電大學通信與信息工程學院 西安 710121
-
2.
電子信息現(xiàn)場勘驗應用技術(shù)公安部重點實驗室 西安 710121
Image Thresholding Segmentation Method Based on Reciprocal Rough Entropy
-
1.
School of Communication and Information Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
-
2.
Key Laboratory of Electronic Information Application Technology for Scene Investigation, Public Security Ministry, Xi’an 710121, China
-
摘要:
基于粗糙集理論的粗糙熵閾值法不需要圖像之外的先驗信息。粗糙熵閾值法需要解決兩個問題,一是圖像信息不完整性的度量,二是圖像的?;?。該文基于倒數(shù)信息熵,提出一種倒數(shù)粗糙熵用來度量圖像中信息的不完整性。為了更好地對圖像進行?;捎靡环N基于均勻性直方圖的粒子選取方式。該文提出的倒數(shù)粗糙熵表述簡潔,計算簡單。實驗驗證了該文方法的有效性。
-
關(guān)鍵詞:
- 圖像處理 /
- 閾值分割 /
- 粗糙熵 /
- 倒數(shù)粗糙熵 /
- ?;?/a>
Abstract:Image thresholding methods based on the rough entropy segment the images without prior information except the images. There are two problems to be considered in the rough entropy based thresholding methods, i.e., measuring the incompleteness of knowledge about an image and granulating the image. In this paper, reciprocal rough entropy, a new form of rough entropy, is defined to measure the incompleteness of the image information. In order to granulate the image effectively, a granule size selection method based on the homogeneity histogram is employed. The proposed reciprocal rough entropy is simple in expression and calculation. The experimental results verify the effectiveness of the proposed algorithm.
-
Key words:
- Image processing /
- Thresholding segmentation /
- Rough entropy /
- Reciprocal rough entropy /
- Granulation
-
表 1 6種算法的閾值比較
最大粗糙熵法 模糊熵法 羅的方法 Masi熵法 倒數(shù)熵法 倒數(shù)粗糙熵法 NDT image1 177 51 (151,151) 83 116 221 NDT image2 52 177 (106,115) 45 160 72 D5\irw02\000215 68 75 (66,70) 46 148 211 D5\irw06\000225 65 75 (66,67) 46 128 209 下載: 導出CSV
表 2 6種算法的ME值與SSIM值比較
NDT image1 NDT image2 D5\irw02\000215 D5\irw06\000225 ME SSIM ME SSIM ME SSIM ME SSIM 最大粗糙熵法 0.3605 0.0283 0.1996 0.5880 0.5556 0.0011 0.5671 0.0021 模糊熵法 0.9507 0.0015 0.2250 0.2345 0.5082 0.0013 0.4722 0.0029 羅的方法 0.6341 0.0098 0.0077 0.9822 0.5596 0.0013 0.5679 0.0021 Masi熵法 0.9136 0.0033 0.5470 0.1658 0.6841 0.0007 0.7181 0.0013 倒數(shù)熵法 0.8486 0.0049 0.2041 0.3172 0.0366 0.1367 0.0461 0.1585 倒數(shù)粗糙熵法 0.0016 0.9765 0.0429 0.9015 0.0051 0.7286 0.0084 0.6833 下載: 導出CSV
-
SEZGIN M and SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146–165. doi: 10.1117/1.1631315 OLIVA D, HINOJOSA S, CUEVAS E, et al. Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm[J]. Expert Systems with Applications, 2017, 79: 164–180. doi: 10.1016/j.eswa.2017.02.042 聶方彥, 李建奇, 張平鳳, 等. 復雜圖像的Kaniadakis熵閾值分割方法[J]. 激光與紅外, 2017, 47(8): 1040–1045. doi: 10.3969/j.issn.1001-5078.2017.08.022NIE Fangyan, LI Jianqi, ZHANG Pingfeng, et al. Threshold segmentation method of complex image based on Kaniadakis entropy[J]. Laser &Infrared, 2017, 47(8): 1040–1045. doi: 10.3969/j.issn.1001-5078.2017.08.022 NG H F. Automatic thresholding for defect detection[J]. Pattern Recognition Letters, 2006, 27(14): 1644–1649. doi: 10.1016/j.patrec.2006.03.009 BHANDARI A K, KUMAR A, and SINGH G K. Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms[J]. Expert Systems with Applications, 2015, 42(22): 8707–8730. doi: 10.1016/j.eswa.2015.07.025 PAL S K, SHANKAR B U, and MITRA P. Granular computing, rough entropy and object extraction[J]. Pattern Recognition Letters, 2005, 26(16): 2509–2517. doi: 10.1016/j.patrec.2005.05.007 PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5): 341–356. doi: 10.1007/BF01001956 PAWLAK Z. Rough Sets: Theoretical Aspects of Reasoning about Data[M]. Dordrecht: Springer, 1991: 2−8. 岳曉冬, 苗奪謙, 鐘才明. 基于粗糙性度量的彩色圖像分割方法[J]. 自動化學報, 2010, 36(6): 807–816.YUE Xiaodong, MIAO Duoqian, and ZHONG Caiming. Roughness measure approach to color image segmentation[J]. Acta Automatica Sinica, 2010, 36(6): 807–816. 吳濤. 圖像閾值化的自適應粗糙熵方法[J]. 中國圖象圖形學報, 2014, 19(1): 1–10. doi: 10.11834/jig.20140101WU Tao. Adaptive rough entropy method for image thresholding[J]. Journal of Image and Graphics, 2014, 19(1): 1–10. doi: 10.11834/jig.20140101 姚龍洋, 張清華, 胡帥鵬, 等. 基于近似集與粒子群的粗糙熵圖像分割方法[J]. 計算機科學與探索, 2016, 10(5): 699–708.YAO Longyang, ZHANG Qinghua, HU Shuaipeng, et al. Rough entropy for image segmentation based on approximation sets and particle swarm optimization[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(5): 699–708. 劉麗華, 周濤, 周乾智. 基于VPRS粗糙熵的圖像分割[J]. 計算機工程與應用, 2018, 54(20): 178–183. doi: 10.3778/j.issn.1002-8331.1804-0090LIU Lihua, ZHOU Tao, and ZHOU Qianzhi. Image segmentation on entropy of variable precision rough entropy[J]. Computer Engineering and Applications, 2018, 54(20): 178–183. doi: 10.3778/j.issn.1002-8331.1804-0090 SARDAR M, MITRA S, and SHANKAR B U. Iris localization using rough entropy and CSA: A soft computing approach[J]. Applied Soft Computing, 2018, 67: 61–69. doi: 10.1016/j.asoc.2018.02.047 HASSANIEN A E, ABRAHAM A, PETERS J F, et al. Rough sets and near sets in medical imaging: A review[J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(6): 955–968. doi: 10.1109/TITB.2009.2017017 SEN D and PAL S K. Generalized rough sets, entropy, and image ambiguity measures[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 2009, 39(1): 117–128. doi: 10.1109/TSMCB.2008.2005527 SEN D and PAL S K. Histogram thresholding using beam theory and ambiguity measures[J]. Fundamenta Informaticae, 2007, 75(1/4): 483–504. MA?YSZKO D and STEPANIUK J. Adaptive multilevel rough entropy evolutionary thresholding[J]. Information Sciences, 2010, 180(7): 1138–1158. doi: 10.1016/j.ins.2009.11.034 鄧廷權(quán), 盛春冬. 結(jié)合變精度粗糙熵和遺傳算法的圖像閾值分割方法[J]. 控制與決策, 2011, 26(7): 1079–1082.DENG Tingquan and SHENG Chundong. Image threshold segmentation based on entropy of variable precision rough sets and genetic algorithm[J]. Control and Decision, 2011, 26(7): 1079–1082. 吳尚智, 佘志用, 張霞, 等. 利用變精度粗糙熵的圖像分割算法[J]. 計算機工程與科學, 2018, 40(10): 1837–1843. doi: 10.3969/j.issn.1007-130X.2018.10.016WU Shangzhi, SHE Zhiyong, HANG Xia, et al. An image segmentation algorithm using variable precision rough entropy[J]. Computer Engineering &Science, 2018, 40(10): 1837–1843. doi: 10.3969/j.issn.1007-130X.2018.10.016 PAL N R and PAL S K. Entropic thresholding[J]. Signal Processing, 1989, 16(2): 97–108. doi: 10.1016/0165-1684(89)90090-X 吳一全, 占必超. 基于混沌粒子群優(yōu)化的倒數(shù)熵閾值選取方法[J]. 信號處理, 2010, 26(7): 1044–1049. doi: 10.3969/j.issn.1003-0530.2010.07.015WU Yiquan and ZHAN Bichao. Thresholding based on reciprocal entropy and chaotic particle swarm optimization[J]. Signal Processing, 2010, 26(7): 1044–1049. doi: 10.3969/j.issn.1003-0530.2010.07.015 吳一全, 殷駿, 畢碩本. 最大倒數(shù)熵/倒數(shù)灰度熵多閾值選取[J]. 信號處理, 2013, 29(2): 143–151. doi: 10.3969/j.issn.1003-0530.2013.02.001WU Yiquan, YIN Jun, and BI Shuoben. Multi-threshold selection using maximum reciprocal entropy/reciprocal gray entropy[J]. Journal of Signal Processing, 2013, 29(2): 143–151. doi: 10.3969/j.issn.1003-0530.2013.02.001 CHENG Hengda and SUN Ying. A hierarchical approach to color image segmentation using homogeneity[J]. IEEE Transactions on Image Processing, 2000, 9(12): 2071–2082. doi: 10.1109/83.887975 羅鈞, 楊永松, 侍寶玉. 基于改進的自適應差分演化算法的二維Otsu多閾值圖像分割[J]. 電子與信息學報, 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949LUO Jun, YANG Yongsong, and SHI Baoyu. Multi-threshold image segmentation of 2D Otsu based on improved adaptive differential evolution algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(8): 2017–2024. doi: 10.11999/JEIT180949 SHUBHAM S and BHANDARI A K. A generalized Masi entropy based efficient multilevel thresholding method for color image segmentation[J]. Multimedia Tools and Applications, 2019, 78(12): 17197–17238. doi: 10.1007/s11042-018-7034-x LI Xueqin, ZHAO Zhiwei, and CHENG H S. Fuzzy entropy threshold approach to breast cancer detection[J]. Information Sciences - Applications, 1995, 4(1): 49–56. doi: 10.1016/1069-0115(94)00019-x http://vcipl-okstate.org/pbvs/bench/, 2013. WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861 -